Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis

前列腺癌 前列腺切除术 前列腺 病理 医学 H&E染色 分级(工程) 外科病理学 癌症 高级别前列腺上皮内瘤变 放射科 上皮内瘤变 内科学 免疫组织化学 生物 生态学
作者
Weisi Xie,Nicholas P. Reder,Can Koyuncu,Patrick Leo,Sarah Hawley,Hongyi Huang,Chenyi Mao,Nadia Postupna,Soyoung Kang,Robert Serafin,Gan Gao,Qinghua Han,Kevin W. Bishop,Lindsey A. Barner,Pingfu Fu,Jonathan L. Wright,C. Dirk Keene,Joshua C. Vaughan,Andrew Janowczyk,Adam K. Glaser
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (2): 334-345 被引量:78
标识
DOI:10.1158/0008-5472.can-21-2843
摘要

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不周完成签到,获得积分20
1秒前
开朗的山彤完成签到,获得积分10
1秒前
喜文完成签到 ,获得积分10
4秒前
舒心的秋荷完成签到 ,获得积分10
5秒前
谷曼婷发布了新的文献求助10
6秒前
隐形的傲易完成签到 ,获得积分10
7秒前
8秒前
疾风知劲草完成签到,获得积分10
8秒前
9秒前
汉堡包应助whale采纳,获得10
12秒前
CodeCraft应助依米zhang采纳,获得10
13秒前
无情修杰完成签到 ,获得积分10
13秒前
文静的牛排完成签到,获得积分10
14秒前
14秒前
顺心的千萍完成签到,获得积分10
15秒前
无花果应助聪慧的凝海采纳,获得10
16秒前
2316690509完成签到 ,获得积分10
16秒前
16秒前
20年单身狗完成签到,获得积分10
18秒前
陈诗羽完成签到,获得积分10
18秒前
cz发布了新的文献求助10
19秒前
皮卡丘比特应助lalala采纳,获得20
19秒前
爱听歌从蓉关注了科研通微信公众号
20秒前
香蕉觅云应助zh采纳,获得10
20秒前
21秒前
金金金完成签到,获得积分10
22秒前
23秒前
LONG发布了新的文献求助10
25秒前
红烧肉耶发布了新的文献求助10
26秒前
kirazou完成签到,获得积分10
26秒前
lwj完成签到,获得积分10
27秒前
32秒前
共享精神应助自觉的小凝采纳,获得10
36秒前
JamesPei应助琪求好运采纳,获得10
36秒前
37秒前
37秒前
37秒前
guard发布了新的文献求助10
37秒前
Sweety-完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511