Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis

前列腺癌 前列腺切除术 前列腺 病理 医学 H&E染色 分级(工程) 外科病理学 癌症 高级别前列腺上皮内瘤变 放射科 上皮内瘤变 内科学 免疫组织化学 生物 生态学
作者
Weisi Xie,Nicholas P. Reder,Can Koyuncu,Patrick Leo,Sarah Hawley,Hongyi Huang,Chenyi Mao,Nadia Postupna,Soyoung Kang,Robert Serafin,Gan Gao,Qinghua Han,Kevin W. Bishop,Lindsey A. Barner,Pingfu Fu,Jonathan L. Wright,C. Dirk Keene,Joshua C. Vaughan,Andrew Janowczyk,Adam K. Glaser
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (2): 334-345 被引量:78
标识
DOI:10.1158/0008-5472.can-21-2843
摘要

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
加勒比海带完成签到,获得积分10
1秒前
1秒前
qianduoduo完成签到 ,获得积分10
1秒前
putong发布了新的文献求助10
2秒前
杨宝发布了新的文献求助10
3秒前
科研通AI6应助背后的雨竹采纳,获得10
3秒前
qqwdss发布了新的文献求助10
4秒前
4秒前
李健应助科研小白采纳,获得10
5秒前
科研通AI6应助李开心采纳,获得10
6秒前
qianduoduo关注了科研通微信公众号
7秒前
理理发布了新的文献求助10
7秒前
7秒前
英俊的铭应助Yzz采纳,获得10
7秒前
8秒前
wanci应助WYS采纳,获得10
8秒前
SciGPT应助阿巴阿巴采纳,获得10
8秒前
8秒前
侧耳倾听发布了新的文献求助10
8秒前
9秒前
Kathy发布了新的文献求助10
10秒前
科目三应助Salut采纳,获得10
11秒前
李爱国应助chengzi202采纳,获得10
11秒前
852应助123采纳,获得10
11秒前
11秒前
深情安青应助侧耳倾听采纳,获得10
12秒前
Wlgd完成签到,获得积分20
12秒前
合成研究菜鸟完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
糊里糊涂发布了新的文献求助10
14秒前
碧草柴香发布了新的文献求助100
14秒前
浮游应助杨宝采纳,获得10
14秒前
科研小白书hz完成签到 ,获得积分10
15秒前
理理完成签到,获得积分10
15秒前
FangY1发布了新的文献求助10
15秒前
7171717发布了新的文献求助10
16秒前
orixero应助鲸鱼采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917