Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis

前列腺癌 前列腺切除术 前列腺 病理 医学 H&E染色 分级(工程) 外科病理学 癌症 高级别前列腺上皮内瘤变 放射科 上皮内瘤变 内科学 免疫组织化学 生物 生态学
作者
Weisi Xie,Nicholas P. Reder,Can Koyuncu,Patrick Leo,Sarah Hawley,Hongyi Huang,Chenyi Mao,Nadia Postupna,Soyoung Kang,Robert Serafin,Gan Gao,Qinghua Han,Kevin W. Bishop,Lindsey A. Barner,Pingfu Fu,Jonathan L. Wright,C. Dirk Keene,Joshua C. Vaughan,Andrew Janowczyk,Adam K. Glaser
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (2): 334-345 被引量:78
标识
DOI:10.1158/0008-5472.can-21-2843
摘要

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XMH发布了新的文献求助10
1秒前
隐形曼青应助优美紫槐采纳,获得10
1秒前
科目三应助Lendar采纳,获得10
1秒前
彭于晏应助过时的棒棒糖采纳,获得100
2秒前
qhtwld发布了新的文献求助10
6秒前
8秒前
11秒前
lalala完成签到,获得积分10
12秒前
ddd完成签到,获得积分10
12秒前
13秒前
无花果应助1526918042采纳,获得10
13秒前
13秒前
笋笋完成签到,获得积分10
14秒前
Owen应助南枝焙雪采纳,获得10
14秒前
踌躇前半生完成签到,获得积分10
14秒前
psylan完成签到,获得积分10
14秒前
Magic麦发布了新的文献求助10
15秒前
科研闲人完成签到,获得积分10
15秒前
16秒前
Harlotte发布了新的文献求助10
16秒前
能干冰露完成签到,获得积分10
16秒前
山月鹿完成签到,获得积分10
17秒前
鸠摩智发布了新的文献求助10
17秒前
李健的小迷弟应助Lay采纳,获得10
17秒前
xiaominl发布了新的文献求助80
18秒前
科研牛马完成签到,获得积分10
19秒前
彭于晏应助动听锦程采纳,获得10
19秒前
XMH完成签到,获得积分10
21秒前
文静的绿真完成签到,获得积分10
21秒前
笋笋发布了新的文献求助10
21秒前
丰富的雪糕完成签到,获得积分10
22秒前
slj完成签到,获得积分10
22秒前
22秒前
我是老大应助ayu采纳,获得10
24秒前
一清完成签到,获得积分20
24秒前
27秒前
27秒前
27秒前
Ellen发布了新的文献求助10
27秒前
专注寻菱发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232