Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis

前列腺癌 前列腺切除术 前列腺 病理 医学 H&E染色 分级(工程) 外科病理学 癌症 高级别前列腺上皮内瘤变 放射科 上皮内瘤变 内科学 免疫组织化学 生物 生态学
作者
Weisi Xie,Nicholas P. Reder,Can Koyuncu,Patrick Leo,Sarah Hawley,Hongyi Huang,Chenyi Mao,Nadia Postupna,Soyoung Kang,Robert Serafin,Gan Gao,Qinghua Han,Kevin W. Bishop,Lindsey A. Barner,Pingfu Fu,Jonathan L. Wright,C. Dirk Keene,Joshua C. Vaughan,Andrew Janowczyk,Adam K. Glaser
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (2): 334-345 被引量:78
标识
DOI:10.1158/0008-5472.can-21-2843
摘要

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
warden完成签到 ,获得积分10
2秒前
5秒前
duoduo完成签到 ,获得积分10
8秒前
可爱的函函应助零三零采纳,获得10
10秒前
小医发布了新的文献求助10
11秒前
yuanyuan完成签到,获得积分10
12秒前
14秒前
zzzzzyq完成签到 ,获得积分10
17秒前
王晨光完成签到 ,获得积分10
18秒前
yinyin完成签到 ,获得积分10
18秒前
19秒前
花藏影发布了新的文献求助10
19秒前
30完成签到 ,获得积分10
20秒前
芳芳子呀完成签到,获得积分10
21秒前
zx0914发布了新的文献求助10
22秒前
24秒前
抹茶拿铁加奶砖完成签到 ,获得积分0
24秒前
jin晨发布了新的文献求助10
27秒前
lalaland完成签到,获得积分10
27秒前
28秒前
也未可知完成签到 ,获得积分10
29秒前
xiaojin完成签到,获得积分10
29秒前
田田完成签到 ,获得积分10
30秒前
31秒前
斯文的炳完成签到 ,获得积分10
31秒前
123456qi完成签到,获得积分10
32秒前
研友_VZG7GZ应助深渊晾衣杆采纳,获得10
32秒前
计划逃跑完成签到 ,获得积分10
33秒前
34秒前
大力惜海完成签到,获得积分10
35秒前
36秒前
37秒前
37秒前
37秒前
风中的向卉完成签到 ,获得积分10
38秒前
jovrtic发布了新的文献求助10
39秒前
tulips完成签到 ,获得积分10
41秒前
陈昭琼发布了新的文献求助10
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603532
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854133
捐赠科研通 4693329
什么是DOI,文献DOI怎么找? 2540799
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806