Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis

前列腺癌 前列腺切除术 前列腺 病理 医学 H&E染色 分级(工程) 外科病理学 癌症 高级别前列腺上皮内瘤变 放射科 上皮内瘤变 内科学 免疫组织化学 生物 生态学
作者
Weisi Xie,Nicholas P. Reder,Can Koyuncu,Patrick Leo,Sarah Hawley,Hongyi Huang,Chenyi Mao,Nadia Postupna,Soyoung Kang,Robert Serafin,Gan Gao,Qinghua Han,Kevin W. Bishop,Lindsey A. Barner,Pingfu Fu,Jonathan L. Wright,C. Dirk Keene,Joshua C. Vaughan,Andrew Janowczyk,Adam K. Glaser
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (2): 334-345 被引量:78
标识
DOI:10.1158/0008-5472.can-21-2843
摘要

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟发布了新的文献求助10
1秒前
oth1k完成签到,获得积分20
1秒前
1秒前
oth1k发布了新的文献求助10
3秒前
达夫斯基完成签到,获得积分10
4秒前
Linden_bd完成签到 ,获得积分10
6秒前
7秒前
HaoyangP发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
深情安青应助nuannuan采纳,获得20
10秒前
呆萌冰绿完成签到,获得积分10
10秒前
李大园子完成签到 ,获得积分10
10秒前
10秒前
华枝春满完成签到,获得积分10
11秒前
wuqilong完成签到,获得积分10
12秒前
dreamlightzy应助qmd采纳,获得10
12秒前
NewMoon完成签到,获得积分10
12秒前
FashionBoy应助嘟嘟采纳,获得10
12秒前
洁净的127完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
2339822272发布了新的文献求助10
15秒前
星星完成签到,获得积分10
15秒前
幸运兔发布了新的文献求助10
16秒前
上官若男应助wqx采纳,获得10
16秒前
月亮邮递员完成签到,获得积分10
18秒前
222完成签到 ,获得积分10
18秒前
Likj完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
异氰酸正丙酯完成签到 ,获得积分10
20秒前
wsc发布了新的文献求助10
20秒前
幸运兔完成签到,获得积分10
21秒前
曾祥钰完成签到 ,获得积分10
22秒前
23秒前
23秒前
bkagyin应助XM采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333