Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis

前列腺癌 前列腺切除术 前列腺 病理 医学 H&E染色 分级(工程) 外科病理学 癌症 高级别前列腺上皮内瘤变 放射科 上皮内瘤变 内科学 免疫组织化学 生物 生态学
作者
Weisi Xie,Nicholas P. Reder,Can Koyuncu,Patrick Leo,Sarah Hawley,Hongyi Huang,Chenyi Mao,Nadia Postupna,Soyoung Kang,Robert Serafin,Gan Gao,Qinghua Han,Kevin W. Bishop,Lindsey A. Barner,Pingfu Fu,Jonathan L. Wright,C. Dirk Keene,Joshua C. Vaughan,Andrew Janowczyk,Adam K. Glaser,Anant Madabhushi,Lawrence D. True,Jonathan Liu
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (2): 334-345 被引量:68
标识
DOI:10.1158/0008-5472.can-21-2843
摘要

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
甜甜玫瑰应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
1秒前
佳期如梦完成签到,获得积分20
2秒前
lmq发布了新的文献求助10
3秒前
3秒前
清脆的雨梅完成签到 ,获得积分10
4秒前
颖颖子完成签到,获得积分10
5秒前
佳期如梦发布了新的文献求助10
5秒前
疯狂的科研小羊完成签到,获得积分10
6秒前
无辜紫菜完成签到 ,获得积分10
6秒前
7秒前
pp发布了新的文献求助30
8秒前
无花果应助哈哈哈采纳,获得10
8秒前
nefu biology完成签到,获得积分10
8秒前
充电宝应助细心觅风采纳,获得10
9秒前
Lucas应助lxcy0612采纳,获得10
9秒前
Hello应助左丘山河采纳,获得10
9秒前
危机的娩完成签到,获得积分10
10秒前
11秒前
爆米花应助心随以动采纳,获得10
11秒前
11秒前
11秒前
ossantu发布了新的文献求助10
12秒前
搜集达人应助compchem采纳,获得10
12秒前
大陶罐发布了新的文献求助10
12秒前
知123发布了新的文献求助10
13秒前
危机的娩发布了新的文献求助10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231633
求助须知:如何正确求助?哪些是违规求助? 2878606
关于积分的说明 8206939
捐赠科研通 2546109
什么是DOI,文献DOI怎么找? 1375679
科研通“疑难数据库(出版商)”最低求助积分说明 647445
邀请新用户注册赠送积分活动 622579