材料科学
条状物
碳纤维增强聚合物
结构工程
抗压强度
剪切(地质)
复合材料
矩形
失效模式及影响分析
纤维增强塑料
钢筋混凝土
有限元法
抗剪强度(土壤)
梁(结构)
工程类
地质学
土壤科学
土壤水分
数学
几何学
作者
Ma’en Abdel-Jaber,Mu’tasim Abdel-Jaber,Hasan Katkhuda,Nasim Shatarat,Rola El-Nimri
出处
期刊:Buildings
[MDPI AG]
日期:2021-11-21
卷期号:11 (11): 563-563
被引量:21
标识
DOI:10.3390/buildings11110563
摘要
This paper investigates the effect of using near-surface mounted carbon fiber-reinforced polymer (NSM-CFRP) on the shear strengthening of rectangle beams with low strength concrete (f′c = 17 MPa), medium strength concrete (f′c = 32 MPa), and high strength concrete (f′c = 47 MPa). The experimental program was performed by installing NSM-CFRP strips vertically in three different configurations: aligned with the internal stirrups, one vertical NSM-CFRP strip between every two internal stirrups, and two vertical NSM-CFRP strips between every two internal stirrups. All tested beams were simply supported beams and tested under a three-point loading test. The experimental results were compared with the theoretical capacities that were calculated according to the ACI 440.2R-17 and finite element analysis (FEA) that was conducted using ABAQUS software to simulate the behavior of all beams. The experimental results indicated that using NSM-CFRP limited the failure mode of all beams to pure shear failure with no debonding or rapture of the carbon strips. Moreover, the use of NSM-CFRP proved its efficiency by increasing the shear capacity of all beams by a range of 4% to 66%, in which the best enhancement was recorded for the case of using two unaligned NSM-CFRP strips. In general, the experimental shear capacities increased with the increase in the compressive strength of all beams. On the other hand, the ACI 440.2R-17 was conservative in predicting the theoretical shear capacities, and the FEA results agreed well with the experimental results.
科研通智能强力驱动
Strongly Powered by AbleSci AI