Drivers trust, acceptance, and takeover behaviors in fully automated vehicles: Effects of automated driving styles and driver’s driving styles

人为因素与人体工程学 风格(视觉艺术) 安全驾驶 工程类 驾驶模拟器 毒物控制 心理学 计算机安全 汽车工程 计算机科学 模拟 医学 历史 环境卫生 考古
作者
Zheng Ma,Yiqi Zhang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:159: 106238-106238 被引量:90
标识
DOI:10.1016/j.aap.2021.106238
摘要

• The study investigates the interaction between driver’s and AV’s driving styles. • AV’s driving styles aligning with drivers’ promote driver’s trust and acceptance. • The influence of driver trust on takeover frequency is mediated by driver acceptance. • AV’s driving styles against drivers reduce trust and increase takeover frequency. Automated Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, drivers could be reluctant to ride with AVs due to their lack of trust and acceptance of AVs’ driving styles. The present study investigated the effects of the designed driving style of AV (aggressive/defensive) and driver’s driving style (aggressive/defensive) on driver's trust, acceptance, and take-over behavior in a fully AV. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve driving scenarios in either an aggressive AV or a defensive AV. Results revealed that driver’s trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. General estimating equations were conducted to analyze the relationships between driver’s trust, acceptance, and take over frequency. The results showed that the effect of driver’s trust in AVs on takeover frequency was mediated by driver’s acceptance of AVs. These findings implied that driver’s trust and acceptance of AVs could be enhanced when the designed AV’s driving style aligned with driver’s own driving style, which in turn, reduce undesired take over behavior. However, the “aggressive” AV driving style should be designed carefully considering driver safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的粉丝团团长应助you采纳,获得10
刚刚
刚刚
科研通AI5应助哈哈哈采纳,获得10
1秒前
1秒前
谢谢你变体精灵完成签到,获得积分10
3秒前
3秒前
3秒前
李娟发布了新的文献求助10
3秒前
小哭包发布了新的文献求助10
4秒前
外向半青完成签到,获得积分10
5秒前
026发布了新的文献求助10
5秒前
早早发布了新的文献求助10
6秒前
6秒前
Orange应助grace采纳,获得10
6秒前
6秒前
852应助4354采纳,获得10
7秒前
浮游应助Baili采纳,获得10
8秒前
8秒前
独特秋灵应助酷酷的山雁采纳,获得10
8秒前
丘比特应助妖九笙采纳,获得10
8秒前
yang完成签到,获得积分10
10秒前
JamesPei应助此晴可待采纳,获得10
10秒前
10秒前
11秒前
顾矜应助Hah采纳,获得10
11秒前
13秒前
蜀黍发布了新的文献求助10
13秒前
14秒前
盛隆发布了新的文献求助10
14秒前
wanci应助可靠幻然采纳,获得10
14秒前
眯眯眼的世界完成签到,获得积分10
15秒前
打打应助Gu采纳,获得10
16秒前
哈哈哈发布了新的文献求助10
16秒前
丁真浩完成签到,获得积分10
17秒前
于晓露完成签到,获得积分10
17秒前
香蕉觅云应助旦皋采纳,获得10
17秒前
18秒前
sure发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981