亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images

降噪 计算机科学 人工智能 视频去噪 噪音(视频) 非本地手段 模式识别(心理学) 水准点(测量) 像素 图像(数学) 计算机视觉 图像去噪 视频处理 大地测量学 视频跟踪 多视点视频编码 地理
作者
Tao Huang,Songjiang Li,Xu Jia,Huchuan Lu,Jianzhuang Liu
标识
DOI:10.1109/cvpr46437.2021.01454
摘要

In the last few years, image denoising has benefited a lot from the fast development of neural networks. However, the requirement of large amounts of noisy-clean image pairs for supervision limits the wide use of these models. Although there have been a few attempts in training an image denoising model with only single noisy images, existing self-supervised denoising approaches suffer from inefficient network training, loss of useful information, or dependence on noise modeling. In this paper, we present a very simple yet effective method named Neighbor2Neighbor to train an effective image denoising model with only noisy images. Firstly, a random neighbor sub-sampler is proposed for the generation of training image pairs. In detail, input and target used to train a network are images sub-sampled from the same noisy image, satisfying the requirement that paired pixels of paired images are neighbors and have very similar appearance with each other. Secondly, a denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance. The proposed Neighbor2Neighbor framework is able to enjoy the progress of state-of-the-art supervised denoising networks in network architecture design. Moreover, it avoids heavy dependence on the assumption of the noise distribution. We explain our approach from a theoretical perspective and further validate it through extensive experiments, including synthetic experiments with different noise distributions in sRGB space and real-world experiments on a denoising benchmark dataset in raw-RGB space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lepus发布了新的文献求助10
1秒前
40873完成签到 ,获得积分10
2秒前
MP完成签到,获得积分0
4秒前
wcy完成签到 ,获得积分10
6秒前
也未可知完成签到,获得积分10
7秒前
倒霉的芒果完成签到 ,获得积分10
8秒前
mm完成签到 ,获得积分10
10秒前
深情安青应助Bokuto采纳,获得10
20秒前
22秒前
遗忘完成签到,获得积分10
23秒前
monster完成签到 ,获得积分10
24秒前
3XL_akm完成签到,获得积分10
24秒前
隐形曼青应助小飞采纳,获得10
27秒前
27秒前
buena发布了新的文献求助10
27秒前
LMosn完成签到 ,获得积分10
31秒前
睡到自然刑女士完成签到 ,获得积分10
32秒前
Bokuto发布了新的文献求助10
32秒前
称心雁菡完成签到,获得积分10
34秒前
小雨点完成签到 ,获得积分10
35秒前
41秒前
FashionBoy应助lepus采纳,获得10
42秒前
FashionBoy应助小飞采纳,获得10
44秒前
Fancy发布了新的文献求助10
49秒前
Lucas应助科研通管家采纳,获得10
56秒前
星辰大海应助科研通管家采纳,获得10
56秒前
Jasper应助科研通管家采纳,获得10
56秒前
ding应助科研通管家采纳,获得10
56秒前
科研学术完成签到,获得积分10
56秒前
JIN完成签到,获得积分10
59秒前
59秒前
maggie完成签到,获得积分10
1分钟前
香蕉觅云应助小飞采纳,获得10
1分钟前
asdfzxcv应助FeiFeiup采纳,获得10
1分钟前
沉静的迎荷完成签到 ,获得积分10
1分钟前
LIVE完成签到,获得积分10
1分钟前
丘比特应助机智小海豚采纳,获得10
1分钟前
老实千雁完成签到 ,获得积分10
1分钟前
深情安青应助Man采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286