Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images

降噪 计算机科学 人工智能 视频去噪 噪音(视频) 非本地手段 模式识别(心理学) 水准点(测量) 像素 图像(数学) 计算机视觉 图像去噪 视频处理 大地测量学 视频跟踪 多视点视频编码 地理
作者
Tao Huang,Songjiang Li,Xu Jia,Huchuan Lu,Jianzhuang Liu
标识
DOI:10.1109/cvpr46437.2021.01454
摘要

In the last few years, image denoising has benefited a lot from the fast development of neural networks. However, the requirement of large amounts of noisy-clean image pairs for supervision limits the wide use of these models. Although there have been a few attempts in training an image denoising model with only single noisy images, existing self-supervised denoising approaches suffer from inefficient network training, loss of useful information, or dependence on noise modeling. In this paper, we present a very simple yet effective method named Neighbor2Neighbor to train an effective image denoising model with only noisy images. Firstly, a random neighbor sub-sampler is proposed for the generation of training image pairs. In detail, input and target used to train a network are images sub-sampled from the same noisy image, satisfying the requirement that paired pixels of paired images are neighbors and have very similar appearance with each other. Secondly, a denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance. The proposed Neighbor2Neighbor framework is able to enjoy the progress of state-of-the-art supervised denoising networks in network architecture design. Moreover, it avoids heavy dependence on the assumption of the noise distribution. We explain our approach from a theoretical perspective and further validate it through extensive experiments, including synthetic experiments with different noise distributions in sRGB space and real-world experiments on a denoising benchmark dataset in raw-RGB space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
婵婵完成签到,获得积分10
1秒前
1秒前
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
自由白凡完成签到,获得积分10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
田様应助ninomae采纳,获得10
2秒前
2秒前
雍雍完成签到 ,获得积分10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
纸万完成签到,获得积分10
5秒前
如意修洁完成签到 ,获得积分20
5秒前
5秒前
香蕉觅云应助浮浮世世采纳,获得10
6秒前
欣慰的小甜瓜完成签到 ,获得积分10
6秒前
7秒前
脑洞疼应助小蘑菇采纳,获得10
7秒前
虚心沂完成签到,获得积分10
8秒前
身为风帆发布了新的文献求助10
8秒前
9秒前
开心使者发布了新的文献求助10
9秒前
10秒前
壹贰叁肆发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978