亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images

降噪 计算机科学 人工智能 视频去噪 噪音(视频) 非本地手段 模式识别(心理学) 水准点(测量) 像素 图像(数学) 计算机视觉 图像去噪 视频处理 大地测量学 视频跟踪 多视点视频编码 地理
作者
Tao Huang,Songjiang Li,Xu Jia,Huchuan Lu,Jianzhuang Liu
标识
DOI:10.1109/cvpr46437.2021.01454
摘要

In the last few years, image denoising has benefited a lot from the fast development of neural networks. However, the requirement of large amounts of noisy-clean image pairs for supervision limits the wide use of these models. Although there have been a few attempts in training an image denoising model with only single noisy images, existing self-supervised denoising approaches suffer from inefficient network training, loss of useful information, or dependence on noise modeling. In this paper, we present a very simple yet effective method named Neighbor2Neighbor to train an effective image denoising model with only noisy images. Firstly, a random neighbor sub-sampler is proposed for the generation of training image pairs. In detail, input and target used to train a network are images sub-sampled from the same noisy image, satisfying the requirement that paired pixels of paired images are neighbors and have very similar appearance with each other. Secondly, a denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance. The proposed Neighbor2Neighbor framework is able to enjoy the progress of state-of-the-art supervised denoising networks in network architecture design. Moreover, it avoids heavy dependence on the assumption of the noise distribution. We explain our approach from a theoretical perspective and further validate it through extensive experiments, including synthetic experiments with different noise distributions in sRGB space and real-world experiments on a denoising benchmark dataset in raw-RGB space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dph完成签到 ,获得积分10
3秒前
9秒前
13秒前
kei完成签到,获得积分10
13秒前
科研通AI6应助突突突兔采纳,获得10
14秒前
15秒前
18秒前
五原日落发布了新的文献求助10
20秒前
30秒前
35秒前
百里幻竹发布了新的文献求助10
39秒前
49秒前
50秒前
54秒前
愉快的犀牛完成签到 ,获得积分10
1分钟前
1分钟前
jiangmi完成签到,获得积分10
1分钟前
小焦焦发布了新的文献求助10
1分钟前
七面东风完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小焦焦完成签到,获得积分10
1分钟前
鲁啊鲁完成签到 ,获得积分10
1分钟前
1分钟前
万能图书馆应助优美紫槐采纳,获得10
1分钟前
sd发布了新的文献求助10
1分钟前
1分钟前
小波完成签到 ,获得积分10
1分钟前
1分钟前
sd完成签到,获得积分20
1分钟前
1分钟前
leemiii完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
Lucas应助Xuan采纳,获得10
2分钟前
2分钟前
2分钟前
后陡门爱神完成签到 ,获得积分10
2分钟前
leyellows完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595661
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14818037
捐赠科研通 4651473
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754