亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images

降噪 计算机科学 人工智能 视频去噪 噪音(视频) 非本地手段 模式识别(心理学) 水准点(测量) 像素 图像(数学) 计算机视觉 图像去噪 视频处理 大地测量学 视频跟踪 多视点视频编码 地理
作者
Tao Huang,Songjiang Li,Xu Jia,Huchuan Lu,Jianzhuang Liu
标识
DOI:10.1109/cvpr46437.2021.01454
摘要

In the last few years, image denoising has benefited a lot from the fast development of neural networks. However, the requirement of large amounts of noisy-clean image pairs for supervision limits the wide use of these models. Although there have been a few attempts in training an image denoising model with only single noisy images, existing self-supervised denoising approaches suffer from inefficient network training, loss of useful information, or dependence on noise modeling. In this paper, we present a very simple yet effective method named Neighbor2Neighbor to train an effective image denoising model with only noisy images. Firstly, a random neighbor sub-sampler is proposed for the generation of training image pairs. In detail, input and target used to train a network are images sub-sampled from the same noisy image, satisfying the requirement that paired pixels of paired images are neighbors and have very similar appearance with each other. Secondly, a denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance. The proposed Neighbor2Neighbor framework is able to enjoy the progress of state-of-the-art supervised denoising networks in network architecture design. Moreover, it avoids heavy dependence on the assumption of the noise distribution. We explain our approach from a theoretical perspective and further validate it through extensive experiments, including synthetic experiments with different noise distributions in sRGB space and real-world experiments on a denoising benchmark dataset in raw-RGB space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助与我常在采纳,获得20
3秒前
悠悠完成签到,获得积分20
7秒前
12秒前
与我常在完成签到,获得积分20
12秒前
悠悠发布了新的文献求助10
16秒前
24秒前
温柔锦程发布了新的文献求助10
26秒前
28秒前
28秒前
31秒前
坚果发布了新的文献求助10
32秒前
轻松戎发布了新的文献求助10
33秒前
一叶不知秋完成签到,获得积分20
35秒前
50秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
星辰大海应助科研通管家采纳,获得10
54秒前
Electrocatalysis完成签到,获得积分10
56秒前
lulu发布了新的文献求助10
57秒前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
Hello应助泪雨煊采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
泪雨煊完成签到,获得积分10
1分钟前
泪雨煊发布了新的文献求助10
1分钟前
Otter完成签到,获得积分10
1分钟前
柳贯一完成签到,获得积分10
1分钟前
科研通AI6.1应助任性学姐采纳,获得10
1分钟前
2分钟前
任性学姐发布了新的文献求助10
2分钟前
务实的翠风完成签到,获得积分10
2分钟前
小蘑菇应助务实的翠风采纳,获得10
2分钟前
科研通AI6.1应助任性学姐采纳,获得10
2分钟前
Akim应助qc采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739408
求助须知:如何正确求助?哪些是违规求助? 5386143
关于积分的说明 15339719
捐赠科研通 4881969
什么是DOI,文献DOI怎么找? 2624052
邀请新用户注册赠送积分活动 1572745
关于科研通互助平台的介绍 1529540