Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images

降噪 计算机科学 人工智能 视频去噪 噪音(视频) 非本地手段 模式识别(心理学) 水准点(测量) 像素 图像(数学) 计算机视觉 图像去噪 视频处理 大地测量学 视频跟踪 多视点视频编码 地理
作者
Tao Huang,Songjiang Li,Xu Jia,Huchuan Lu,Jianzhuang Liu
标识
DOI:10.1109/cvpr46437.2021.01454
摘要

In the last few years, image denoising has benefited a lot from the fast development of neural networks. However, the requirement of large amounts of noisy-clean image pairs for supervision limits the wide use of these models. Although there have been a few attempts in training an image denoising model with only single noisy images, existing self-supervised denoising approaches suffer from inefficient network training, loss of useful information, or dependence on noise modeling. In this paper, we present a very simple yet effective method named Neighbor2Neighbor to train an effective image denoising model with only noisy images. Firstly, a random neighbor sub-sampler is proposed for the generation of training image pairs. In detail, input and target used to train a network are images sub-sampled from the same noisy image, satisfying the requirement that paired pixels of paired images are neighbors and have very similar appearance with each other. Secondly, a denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance. The proposed Neighbor2Neighbor framework is able to enjoy the progress of state-of-the-art supervised denoising networks in network architecture design. Moreover, it avoids heavy dependence on the assumption of the noise distribution. We explain our approach from a theoretical perspective and further validate it through extensive experiments, including synthetic experiments with different noise distributions in sRGB space and real-world experiments on a denoising benchmark dataset in raw-RGB space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王足各完成签到,获得积分10
刚刚
刚刚
smottom应助a.........采纳,获得10
1秒前
1秒前
英姑应助含蓄觅山采纳,获得10
1秒前
碧蓝的夏彤完成签到,获得积分10
1秒前
结实星星应助饶天源采纳,获得10
1秒前
lw完成签到,获得积分10
2秒前
彪壮的冰双完成签到,获得积分10
2秒前
SMILE发布了新的文献求助10
2秒前
852应助xiaoxiao采纳,获得10
2秒前
石文莉发布了新的文献求助10
3秒前
谨慎道消发布了新的文献求助10
3秒前
科研通AI6.1应助天马采纳,获得10
3秒前
王璐瑶发布了新的文献求助10
3秒前
汪春花完成签到,获得积分10
3秒前
arizaki7完成签到,获得积分10
4秒前
暴躁的振家完成签到,获得积分10
5秒前
葉要加油发布了新的文献求助10
5秒前
5秒前
5秒前
7秒前
7秒前
ren发布了新的文献求助10
7秒前
8秒前
8秒前
Betty完成签到,获得积分10
8秒前
Lucas应助Sober采纳,获得10
9秒前
9秒前
香蕉觅云应助鱼儿采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
脑洞疼应助lang采纳,获得10
11秒前
汉堡包应助HjY采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768867
求助须知:如何正确求助?哪些是违规求助? 5577225
关于积分的说明 15419796
捐赠科研通 4902658
什么是DOI,文献DOI怎么找? 2637844
邀请新用户注册赠送积分活动 1585759
关于科研通互助平台的介绍 1540922