Analysis of epileptic seizures based on EEG using recurrence plot images and deep learning

计算机科学 脑电图 人工智能 重现图 癫痫发作 模式识别(心理学) 特征(语言学) 递归量化分析 深度学习 非线性系统 心理学 语言学 量子力学 精神科 物理 哲学
作者
Anand Shankar,Hnin Kay Khaing,Samarendra Dandapat,Shovan Barma
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:69: 102854-102854 被引量:56
标识
DOI:10.1016/j.bspc.2021.102854
摘要

This work proposes deep learning (DL) based epileptic seizure detection by generating 2D recurrence plot (RP) images of EEG signals for specific brain rhythms. The DL bypasses hand-crafted feature engineering, but extracts feature automatically from input images has displayed significant performance in various domain classification tasks. However, generating 2D images from 1D EEG signals and its quality assessment for DL pipeline has not been addressed properly, which is very crucial as the performance of the DL highly relies on input quality. Besides, suitable brain rhythm for seizure analysis has not been explored properly. Therefore, in this work, 2D input images have been generated by the RP technique from EEG signals for specific brain rhythms by preserving the nonlinear characteristics of EEG and employed a well-known DL, called convolution neural network (CNN). For, experimental validation, two well recognized EEG databases for seizure analysis from Bonn University and CHB-MIT (PhysioNet) have been considered. Eventually, three major parameters — recurrence threshold, time delay, and embedding dimension for an RP image generation have been evaluated and detailed. The results show that the proposed method can achieve classification accuracy up to 93%, which is significantly higher and the δ rhythm has been found suitable for seizure detection. The entropy of RP has been found as a suitable parameter for image quality assessment along with two global statistical parameters such as skewness of root mean square and standard of RP images. In performance evaluation, the proposed method demonstrates its competency by displaying the best classification accuracy compared to related works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Foalphaz完成签到,获得积分10
刚刚
zoe完成签到,获得积分10
1秒前
烟花应助辛勤的绮兰采纳,获得10
1秒前
1秒前
琼枝发布了新的文献求助10
1秒前
YKX完成签到,获得积分10
2秒前
ellen发布了新的文献求助10
2秒前
独特纸飞机完成签到 ,获得积分10
2秒前
静oo完成签到,获得积分10
3秒前
3秒前
笨笨访冬完成签到,获得积分20
4秒前
4秒前
琼12发布了新的文献求助10
4秒前
CipherSage应助lion采纳,获得10
4秒前
暮霭沉沉发布了新的文献求助10
4秒前
香蕉诗蕊应助菜菜爸爸采纳,获得10
4秒前
4秒前
健壮道天应助缓慢听安采纳,获得10
4秒前
嗡嗡完成签到,获得积分10
5秒前
5秒前
5秒前
Nina完成签到,获得积分10
5秒前
蒙萌葫完成签到,获得积分10
5秒前
科研通AI6应助xiyang采纳,获得10
5秒前
5秒前
5秒前
於傲松完成签到,获得积分10
6秒前
彭于晏应助慈祥的丹寒采纳,获得10
6秒前
6秒前
白昼潜行完成签到,获得积分10
7秒前
是猪毛啊完成签到,获得积分10
7秒前
全球完成签到,获得积分10
7秒前
PPP完成签到,获得积分10
7秒前
LYSnow7完成签到 ,获得积分0
8秒前
8秒前
嘿嘿应助啦啦咔嘞采纳,获得30
8秒前
年轻上线完成签到,获得积分10
8秒前
可颂发布了新的文献求助10
8秒前
kingripple完成签到,获得积分10
9秒前
ao黛雷赫完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402319
求助须知:如何正确求助?哪些是违规求助? 4520881
关于积分的说明 14082899
捐赠科研通 4434954
什么是DOI,文献DOI怎么找? 2434495
邀请新用户注册赠送积分活动 1426678
关于科研通互助平台的介绍 1405415