Analysis of epileptic seizures based on EEG using recurrence plot images and deep learning

计算机科学 脑电图 人工智能 重现图 癫痫发作 模式识别(心理学) 特征(语言学) 递归量化分析 深度学习 非线性系统 心理学 语言学 量子力学 精神科 物理 哲学
作者
Anand Shankar,Hnin Kay Khaing,Samarendra Dandapat,Shovan Barma
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:69: 102854-102854 被引量:44
标识
DOI:10.1016/j.bspc.2021.102854
摘要

This work proposes deep learning (DL) based epileptic seizure detection by generating 2D recurrence plot (RP) images of EEG signals for specific brain rhythms. The DL bypasses hand-crafted feature engineering, but extracts feature automatically from input images has displayed significant performance in various domain classification tasks. However, generating 2D images from 1D EEG signals and its quality assessment for DL pipeline has not been addressed properly, which is very crucial as the performance of the DL highly relies on input quality. Besides, suitable brain rhythm for seizure analysis has not been explored properly. Therefore, in this work, 2D input images have been generated by the RP technique from EEG signals for specific brain rhythms by preserving the nonlinear characteristics of EEG and employed a well-known DL, called convolution neural network (CNN). For, experimental validation, two well recognized EEG databases for seizure analysis from Bonn University and CHB-MIT (PhysioNet) have been considered. Eventually, three major parameters — recurrence threshold, time delay, and embedding dimension for an RP image generation have been evaluated and detailed. The results show that the proposed method can achieve classification accuracy up to 93%, which is significantly higher and the δ rhythm has been found suitable for seizure detection. The entropy of RP has been found as a suitable parameter for image quality assessment along with two global statistical parameters such as skewness of root mean square and standard of RP images. In performance evaluation, the proposed method demonstrates its competency by displaying the best classification accuracy compared to related works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淀粉肠发布了新的文献求助10
刚刚
1秒前
xuan发布了新的文献求助10
2秒前
苹果寻菱发布了新的文献求助10
4秒前
Nibbles发布了新的文献求助10
4秒前
曾经天德发布了新的文献求助20
5秒前
Panruyi完成签到,获得积分10
5秒前
orixero应助xuan采纳,获得10
9秒前
10秒前
LW_Yem完成签到,获得积分10
11秒前
英俊的铭应助wangxiaoer采纳,获得10
11秒前
jinyu发布了新的文献求助10
12秒前
科研通AI2S应助一颗小星星采纳,获得10
12秒前
kido完成签到,获得积分10
13秒前
科目三应助俊逸的翅膀采纳,获得10
14秒前
烟花应助伊森xay采纳,获得10
14秒前
Orange应助普拉姆采纳,获得10
14秒前
海上生明月完成签到 ,获得积分10
15秒前
春风十里完成签到,获得积分10
21秒前
21秒前
22秒前
平常的可乐完成签到 ,获得积分10
22秒前
23秒前
二牛发布了新的文献求助10
25秒前
25秒前
26秒前
gulugulu发布了新的文献求助20
27秒前
史开慧发布了新的文献求助10
28秒前
duuuuuu发布了新的文献求助30
29秒前
31秒前
32秒前
32秒前
打打应助隐形的寒凝采纳,获得10
33秒前
流星发布了新的文献求助10
33秒前
精明之双发布了新的文献求助10
35秒前
gulugulu完成签到,获得积分20
36秒前
阿桃狸子完成签到,获得积分10
36秒前
37秒前
posh完成签到 ,获得积分10
37秒前
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320