Analysis of epileptic seizures based on EEG using recurrence plot images and deep learning

计算机科学 脑电图 人工智能 重现图 癫痫发作 模式识别(心理学) 特征(语言学) 递归量化分析 深度学习 非线性系统 心理学 语言学 量子力学 精神科 物理 哲学
作者
Anand Shankar,Hnin Kay Khaing,Samarendra Dandapat,Shovan Barma
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102854-102854 被引量:44
标识
DOI:10.1016/j.bspc.2021.102854
摘要

This work proposes deep learning (DL) based epileptic seizure detection by generating 2D recurrence plot (RP) images of EEG signals for specific brain rhythms. The DL bypasses hand-crafted feature engineering, but extracts feature automatically from input images has displayed significant performance in various domain classification tasks. However, generating 2D images from 1D EEG signals and its quality assessment for DL pipeline has not been addressed properly, which is very crucial as the performance of the DL highly relies on input quality. Besides, suitable brain rhythm for seizure analysis has not been explored properly. Therefore, in this work, 2D input images have been generated by the RP technique from EEG signals for specific brain rhythms by preserving the nonlinear characteristics of EEG and employed a well-known DL, called convolution neural network (CNN). For, experimental validation, two well recognized EEG databases for seizure analysis from Bonn University and CHB-MIT (PhysioNet) have been considered. Eventually, three major parameters — recurrence threshold, time delay, and embedding dimension for an RP image generation have been evaluated and detailed. The results show that the proposed method can achieve classification accuracy up to 93%, which is significantly higher and the δ rhythm has been found suitable for seizure detection. The entropy of RP has been found as a suitable parameter for image quality assessment along with two global statistical parameters such as skewness of root mean square and standard of RP images. In performance evaluation, the proposed method demonstrates its competency by displaying the best classification accuracy compared to related works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
DDd完成签到 ,获得积分10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
10秒前
11秒前
鹿阿布完成签到,获得积分10
11秒前
玖文发布了新的文献求助10
12秒前
15秒前
虚拟的日记本完成签到 ,获得积分10
16秒前
庾稀完成签到,获得积分20
17秒前
17秒前
三火完成签到,获得积分10
18秒前
仁爱的若剑完成签到 ,获得积分10
18秒前
纸飞机发布了新的文献求助10
19秒前
Zirong发布了新的文献求助10
23秒前
青炀发布了新的文献求助10
25秒前
隐形曼青应助庾稀采纳,获得10
26秒前
27秒前
轩辕唯雪完成签到,获得积分10
27秒前
顾矜应助accelerate采纳,获得30
28秒前
30秒前
30秒前
Casengyue完成签到,获得积分10
30秒前
G1997完成签到 ,获得积分10
31秒前
轩辕唯雪发布了新的文献求助20
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388