Analysis of epileptic seizures based on EEG using recurrence plot images and deep learning

计算机科学 脑电图 人工智能 重现图 癫痫发作 模式识别(心理学) 特征(语言学) 递归量化分析 深度学习 非线性系统 心理学 语言学 哲学 物理 量子力学 精神科
作者
Anand Shankar,Hnin Kay Khaing,Samarendra Dandapat,Shovan Barma
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102854-102854 被引量:56
标识
DOI:10.1016/j.bspc.2021.102854
摘要

This work proposes deep learning (DL) based epileptic seizure detection by generating 2D recurrence plot (RP) images of EEG signals for specific brain rhythms. The DL bypasses hand-crafted feature engineering, but extracts feature automatically from input images has displayed significant performance in various domain classification tasks. However, generating 2D images from 1D EEG signals and its quality assessment for DL pipeline has not been addressed properly, which is very crucial as the performance of the DL highly relies on input quality. Besides, suitable brain rhythm for seizure analysis has not been explored properly. Therefore, in this work, 2D input images have been generated by the RP technique from EEG signals for specific brain rhythms by preserving the nonlinear characteristics of EEG and employed a well-known DL, called convolution neural network (CNN). For, experimental validation, two well recognized EEG databases for seizure analysis from Bonn University and CHB-MIT (PhysioNet) have been considered. Eventually, three major parameters — recurrence threshold, time delay, and embedding dimension for an RP image generation have been evaluated and detailed. The results show that the proposed method can achieve classification accuracy up to 93%, which is significantly higher and the δ rhythm has been found suitable for seizure detection. The entropy of RP has been found as a suitable parameter for image quality assessment along with two global statistical parameters such as skewness of root mean square and standard of RP images. In performance evaluation, the proposed method demonstrates its competency by displaying the best classification accuracy compared to related works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maydalian完成签到,获得积分10
刚刚
啊哈哈哈完成签到 ,获得积分10
刚刚
小王发布了新的文献求助10
1秒前
汉堡包应助鱼啊鱼采纳,获得10
1秒前
LQYWH给LQYWH的求助进行了留言
1秒前
这个大头张呀完成签到,获得积分10
1秒前
科研通AI6应助宁军杰采纳,获得20
1秒前
sunshine完成签到,获得积分10
2秒前
王浩完成签到,获得积分10
2秒前
王玉完成签到 ,获得积分10
2秒前
科研通AI6应助ash采纳,获得10
3秒前
小蘑菇应助ash采纳,获得10
3秒前
mt完成签到,获得积分10
3秒前
虚幻傲珊完成签到 ,获得积分10
4秒前
小小发布了新的文献求助10
4秒前
传奇3应助Lengbo采纳,获得10
4秒前
4秒前
董浩楠完成签到,获得积分20
4秒前
116发布了新的文献求助10
5秒前
小冰子完成签到,获得积分10
5秒前
史小霜发布了新的文献求助10
5秒前
xiaofanwang完成签到,获得积分10
5秒前
Jasper应助顺利的昊强采纳,获得10
5秒前
陈仙仙完成签到,获得积分10
6秒前
6秒前
6秒前
Eternity2025应助高兴的羊采纳,获得10
7秒前
张欣雨完成签到,获得积分20
7秒前
慈祥的二爷完成签到,获得积分10
7秒前
坚定如南完成签到 ,获得积分10
8秒前
思源应助king采纳,获得10
8秒前
小二郎应助Atoxus采纳,获得10
8秒前
9秒前
小冰子发布了新的文献求助20
9秒前
Adzuki0812完成签到,获得积分10
9秒前
所见即是我完成签到 ,获得积分10
9秒前
zz完成签到,获得积分10
9秒前
复杂曼梅发布了新的文献求助10
9秒前
fff完成签到,获得积分10
10秒前
LLY发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849