Risk predicting for acute coronary syndrome based on machine learning model with kinetic plaque features from serial coronary computed tomography angiography

医学 罪魁祸首 部分流量储备 狭窄 急性冠脉综合征 易损斑块 血流动力学 钙化 放射科 内科学 心脏病学 冠状动脉疾病 前瞻性队列研究 冠状动脉造影 心肌梗塞
作者
Yabin Wang,Haiwei Chen,Ting Sun,Ang Li,Shengshu Wang,Jibin Zhang,Sulei Li,Zheng Zhang,Di Zhu,Xinjiang Wang,Feng Cao
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (6): 800-810 被引量:14
标识
DOI:10.1093/ehjci/jeab101
摘要

More patients with suspected coronary artery disease underwent coronary computed tomography angiography (CCTA) as gatekeeper. However, the prospective relation of plaque features to acute coronary syndrome (ACS) events has not been previously explored.One hundred and one out of 452 patients with documented ACS event and received more than once CCTA during the past 12 years were recruited. Other 101 patients without ACS event were matched as case control. Baseline, follow-up, and changes of anatomical, compositional, and haemodynamic parameters [e.g. luminal stenosis, plaque volume, necrotic core, calcification, and CCTA-derived fractional flow reserve (CT-FFR)] were analysed by independent CCTA measurement core laboratories. Baseline anatomical, compositional, and haemodynamic parameters of lesions showed no significant difference between the two cohorts (P > 0.05). While the culprit lesions exhibited significant increase of luminal stenosis (10.18 ± 2.26% vs. 3.62 ± 1.41%, P = 0.018), remodelling index (0.15 ± 0.14 vs. 0.09 ± 0.01, P < 0.01), and necrotic core (4.79 ± 1.84% vs. 0.43 ± 1.09%, P = 0.019) while decrease of CT-FFR (-0.05 ± 0.005 vs. -0.01 ± 0.003, P < 0.01) and calcium ratio (-4.28 ± 2.48% vs. 4.48 ± 1.46%, P = 0.004) between follow-up CCTA and baseline scans in comparison to that of non-culprit lesion. The XGBoost model comprising the top five important plaque features revealed higher predictive ability (area under the curve 0.918, 95% confidence interval 0.861-0.968).Dynamic changes of plaque features are highly relative with subsequent ACS events. The machine learning model of integrating these lesion characteristics (e.g. CT-FFR, necrotic core, remodelling index, plaque volume, and calcium) can improve the ability for predicting risks of ACS events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jana完成签到,获得积分10
1秒前
不想长大完成签到 ,获得积分10
1秒前
CAS完成签到,获得积分10
7秒前
马铃薯完成签到,获得积分10
7秒前
王瑞泽完成签到 ,获得积分10
8秒前
wenjian完成签到,获得积分10
12秒前
Zhh完成签到 ,获得积分10
13秒前
潮湿小兰花完成签到 ,获得积分10
13秒前
胖胖完成签到 ,获得积分0
13秒前
SC完成签到 ,获得积分10
15秒前
顾矜应助ycw7777采纳,获得10
18秒前
翊然甜周完成签到,获得积分10
18秒前
合适的寄灵完成签到 ,获得积分10
18秒前
阿星捌完成签到 ,获得积分10
22秒前
Linux2000Pro完成签到,获得积分10
25秒前
苹果骑士完成签到,获得积分10
25秒前
岁月间完成签到,获得积分10
28秒前
加油完成签到 ,获得积分10
29秒前
黎笙应助丁逍遥采纳,获得10
30秒前
蚂蚁踢大象完成签到 ,获得积分10
30秒前
捞得话完成签到,获得积分10
32秒前
33秒前
HonestLiang完成签到,获得积分10
33秒前
紫色翡翠完成签到,获得积分10
36秒前
Peanut发布了新的文献求助10
38秒前
40秒前
追寻紫安应助霸气的花生采纳,获得30
41秒前
Wangying完成签到,获得积分10
42秒前
香山叶正红完成签到 ,获得积分10
44秒前
Wangying发布了新的文献求助10
45秒前
Peanut完成签到,获得积分10
45秒前
派大星完成签到,获得积分10
47秒前
bzdjsmw完成签到 ,获得积分10
48秒前
开心完成签到 ,获得积分10
48秒前
赵田完成签到 ,获得积分10
48秒前
黎笙应助向前采纳,获得10
49秒前
50秒前
老实的石头完成签到,获得积分10
51秒前
sfhs完成签到,获得积分10
51秒前
舒适的天奇完成签到 ,获得积分10
52秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265693
求助须知:如何正确求助?哪些是违规求助? 2905635
关于积分的说明 8334284
捐赠科研通 2575918
什么是DOI,文献DOI怎么找? 1400253
科研通“疑难数据库(出版商)”最低求助积分说明 654712
邀请新用户注册赠送积分活动 633554