Risk predicting for acute coronary syndrome based on machine learning model with kinetic plaque features from serial coronary computed tomography angiography

医学 罪魁祸首 部分流量储备 狭窄 急性冠脉综合征 易损斑块 血流动力学 钙化 放射科 内科学 心脏病学 冠状动脉疾病 前瞻性队列研究 冠状动脉造影 心肌梗塞
作者
Yabin Wang,Haiwei Chen,Ting Sun,Ang Li,Shengshu Wang,Jibin Zhang,Sulei Li,Zheng Zhang,Di Zhu,Xinjiang Wang,Feng Cao
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (6): 800-810 被引量:18
标识
DOI:10.1093/ehjci/jeab101
摘要

More patients with suspected coronary artery disease underwent coronary computed tomography angiography (CCTA) as gatekeeper. However, the prospective relation of plaque features to acute coronary syndrome (ACS) events has not been previously explored.One hundred and one out of 452 patients with documented ACS event and received more than once CCTA during the past 12 years were recruited. Other 101 patients without ACS event were matched as case control. Baseline, follow-up, and changes of anatomical, compositional, and haemodynamic parameters [e.g. luminal stenosis, plaque volume, necrotic core, calcification, and CCTA-derived fractional flow reserve (CT-FFR)] were analysed by independent CCTA measurement core laboratories. Baseline anatomical, compositional, and haemodynamic parameters of lesions showed no significant difference between the two cohorts (P > 0.05). While the culprit lesions exhibited significant increase of luminal stenosis (10.18 ± 2.26% vs. 3.62 ± 1.41%, P = 0.018), remodelling index (0.15 ± 0.14 vs. 0.09 ± 0.01, P < 0.01), and necrotic core (4.79 ± 1.84% vs. 0.43 ± 1.09%, P = 0.019) while decrease of CT-FFR (-0.05 ± 0.005 vs. -0.01 ± 0.003, P < 0.01) and calcium ratio (-4.28 ± 2.48% vs. 4.48 ± 1.46%, P = 0.004) between follow-up CCTA and baseline scans in comparison to that of non-culprit lesion. The XGBoost model comprising the top five important plaque features revealed higher predictive ability (area under the curve 0.918, 95% confidence interval 0.861-0.968).Dynamic changes of plaque features are highly relative with subsequent ACS events. The machine learning model of integrating these lesion characteristics (e.g. CT-FFR, necrotic core, remodelling index, plaque volume, and calcium) can improve the ability for predicting risks of ACS events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余夏完成签到,获得积分10
1秒前
Owen应助魏少爷采纳,获得50
2秒前
2秒前
隐形曼青应助科研小菜狗采纳,获得10
2秒前
高贵紫丝发布了新的文献求助10
2秒前
2秒前
3秒前
上官若男应助积极鸵鸟采纳,获得10
3秒前
mkmimii发布了新的文献求助10
3秒前
VitoLi发布了新的文献求助10
5秒前
WaEi发布了新的文献求助10
6秒前
shijin135完成签到,获得积分10
8秒前
汉堡包应助余夏采纳,获得10
9秒前
9秒前
xx发布了新的文献求助10
10秒前
俊秀的猕猴桃完成签到 ,获得积分10
10秒前
zhaosiqi完成签到,获得积分10
13秒前
华仔应助mkmimii采纳,获得10
14秒前
DQY完成签到,获得积分10
15秒前
17秒前
苏silence完成签到,获得积分10
17秒前
18秒前
一只橙子完成签到,获得积分10
19秒前
20秒前
LYY发布了新的文献求助10
22秒前
赘婿应助VitoLi采纳,获得10
23秒前
闪闪的梦柏完成签到 ,获得积分10
23秒前
余夏发布了新的文献求助10
28秒前
28秒前
Echo完成签到,获得积分0
29秒前
29秒前
俊秀的半雪完成签到,获得积分10
30秒前
尊敬的垣完成签到,获得积分10
32秒前
健忘远山完成签到,获得积分10
34秒前
yx_cheng应助酸奶辣条采纳,获得10
34秒前
大力世界发布了新的文献求助10
36秒前
WaEi完成签到,获得积分10
36秒前
36秒前
37秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498