Risk predicting for acute coronary syndrome based on machine learning model with kinetic plaque features from serial coronary computed tomography angiography

医学 罪魁祸首 部分流量储备 狭窄 急性冠脉综合征 易损斑块 血流动力学 钙化 放射科 内科学 心脏病学 冠状动脉疾病 前瞻性队列研究 冠状动脉造影 心肌梗塞
作者
Yabin Wang,Haiwei Chen,Ting Sun,Ang Li,Shengshu Wang,Jibin Zhang,Sulei Li,Zheng Zhang,Di Zhu,Xinjiang Wang,Feng Cao
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (6): 800-810 被引量:18
标识
DOI:10.1093/ehjci/jeab101
摘要

More patients with suspected coronary artery disease underwent coronary computed tomography angiography (CCTA) as gatekeeper. However, the prospective relation of plaque features to acute coronary syndrome (ACS) events has not been previously explored.One hundred and one out of 452 patients with documented ACS event and received more than once CCTA during the past 12 years were recruited. Other 101 patients without ACS event were matched as case control. Baseline, follow-up, and changes of anatomical, compositional, and haemodynamic parameters [e.g. luminal stenosis, plaque volume, necrotic core, calcification, and CCTA-derived fractional flow reserve (CT-FFR)] were analysed by independent CCTA measurement core laboratories. Baseline anatomical, compositional, and haemodynamic parameters of lesions showed no significant difference between the two cohorts (P > 0.05). While the culprit lesions exhibited significant increase of luminal stenosis (10.18 ± 2.26% vs. 3.62 ± 1.41%, P = 0.018), remodelling index (0.15 ± 0.14 vs. 0.09 ± 0.01, P < 0.01), and necrotic core (4.79 ± 1.84% vs. 0.43 ± 1.09%, P = 0.019) while decrease of CT-FFR (-0.05 ± 0.005 vs. -0.01 ± 0.003, P < 0.01) and calcium ratio (-4.28 ± 2.48% vs. 4.48 ± 1.46%, P = 0.004) between follow-up CCTA and baseline scans in comparison to that of non-culprit lesion. The XGBoost model comprising the top five important plaque features revealed higher predictive ability (area under the curve 0.918, 95% confidence interval 0.861-0.968).Dynamic changes of plaque features are highly relative with subsequent ACS events. The machine learning model of integrating these lesion characteristics (e.g. CT-FFR, necrotic core, remodelling index, plaque volume, and calcium) can improve the ability for predicting risks of ACS events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜发卡完成签到,获得积分10
1秒前
潜伏完成签到,获得积分10
1秒前
leleovo发布了新的文献求助10
2秒前
3秒前
星星发布了新的文献求助10
3秒前
3秒前
7秒前
8R60d8给ambitiouslu的求助进行了留言
8秒前
JamesPei应助ravenye采纳,获得30
8秒前
山槐完成签到,获得积分10
9秒前
11秒前
王佳怡完成签到,获得积分10
11秒前
刘欣靓完成签到,获得积分10
12秒前
hbvyjnn发布了新的文献求助10
12秒前
12秒前
星星完成签到,获得积分10
13秒前
明理的忆之完成签到,获得积分10
13秒前
17秒前
理想三寻完成签到,获得积分10
19秒前
zx598376321完成签到,获得积分10
20秒前
敬业乐群发布了新的文献求助10
21秒前
cnspower驳回了Ava应助
23秒前
23秒前
兔兔要睡觉完成签到,获得积分10
24秒前
辛勤誉完成签到 ,获得积分10
26秒前
aq22完成签到 ,获得积分10
27秒前
脑洞疼应助lvlv采纳,获得20
27秒前
烙饼完成签到,获得积分10
28秒前
28秒前
春春完成签到 ,获得积分10
28秒前
present发布了新的文献求助10
30秒前
123455完成签到,获得积分10
30秒前
32秒前
巴山郎完成签到,获得积分10
33秒前
35秒前
36秒前
NexusExplorer应助7号采纳,获得10
38秒前
天天快乐应助present采纳,获得10
38秒前
现代的bb完成签到,获得积分10
38秒前
38秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225595
求助须知:如何正确求助?哪些是违规求助? 4397219
关于积分的说明 13686133
捐赠科研通 4261786
什么是DOI,文献DOI怎么找? 2338712
邀请新用户注册赠送积分活动 1336095
关于科研通互助平台的介绍 1292013