Risk predicting for acute coronary syndrome based on machine learning model with kinetic plaque features from serial coronary computed tomography angiography

医学 罪魁祸首 部分流量储备 狭窄 急性冠脉综合征 易损斑块 血流动力学 钙化 放射科 内科学 心脏病学 冠状动脉疾病 前瞻性队列研究 冠状动脉造影 心肌梗塞
作者
Yabin Wang,Haiwei Chen,Ting Sun,Ang Li,Shengshu Wang,Jibin Zhang,Sulei Li,Zheng Zhang,Di Zhu,Xinjiang Wang,Feng Cao
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (6): 800-810 被引量:18
标识
DOI:10.1093/ehjci/jeab101
摘要

More patients with suspected coronary artery disease underwent coronary computed tomography angiography (CCTA) as gatekeeper. However, the prospective relation of plaque features to acute coronary syndrome (ACS) events has not been previously explored.One hundred and one out of 452 patients with documented ACS event and received more than once CCTA during the past 12 years were recruited. Other 101 patients without ACS event were matched as case control. Baseline, follow-up, and changes of anatomical, compositional, and haemodynamic parameters [e.g. luminal stenosis, plaque volume, necrotic core, calcification, and CCTA-derived fractional flow reserve (CT-FFR)] were analysed by independent CCTA measurement core laboratories. Baseline anatomical, compositional, and haemodynamic parameters of lesions showed no significant difference between the two cohorts (P > 0.05). While the culprit lesions exhibited significant increase of luminal stenosis (10.18 ± 2.26% vs. 3.62 ± 1.41%, P = 0.018), remodelling index (0.15 ± 0.14 vs. 0.09 ± 0.01, P < 0.01), and necrotic core (4.79 ± 1.84% vs. 0.43 ± 1.09%, P = 0.019) while decrease of CT-FFR (-0.05 ± 0.005 vs. -0.01 ± 0.003, P < 0.01) and calcium ratio (-4.28 ± 2.48% vs. 4.48 ± 1.46%, P = 0.004) between follow-up CCTA and baseline scans in comparison to that of non-culprit lesion. The XGBoost model comprising the top five important plaque features revealed higher predictive ability (area under the curve 0.918, 95% confidence interval 0.861-0.968).Dynamic changes of plaque features are highly relative with subsequent ACS events. The machine learning model of integrating these lesion characteristics (e.g. CT-FFR, necrotic core, remodelling index, plaque volume, and calcium) can improve the ability for predicting risks of ACS events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
卡西法完成签到,获得积分10
1秒前
机灵的忆梅完成签到,获得积分10
1秒前
不想干活应助infe采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
不想干活应助zjq采纳,获得10
3秒前
典雅的俊驰应助Jing采纳,获得10
4秒前
咸鱼发布了新的文献求助20
4秒前
4秒前
4秒前
爆米花应助Jane采纳,获得10
4秒前
甘蔗发布了新的文献求助30
4秒前
4秒前
淡然谷秋完成签到 ,获得积分10
5秒前
上官若男应助柒月樊霜采纳,获得10
5秒前
木头人呐完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
诚心中恶发布了新的文献求助10
7秒前
背书强完成签到 ,获得积分10
7秒前
7秒前
Jack123完成签到,获得积分10
8秒前
SciGPT应助认真的缘郡采纳,获得10
8秒前
8秒前
大模型应助乖猫要努力采纳,获得10
8秒前
9秒前
9秒前
哒哒发布了新的文献求助10
9秒前
9秒前
9秒前
眼睛大又蓝完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
shihuishui完成签到,获得积分10
10秒前
田様应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826