The Algorithms of Predicting Bacterial Essential Genes and NcRNAs by Machine Learning

基因 k-最近邻算法 机器学习 同源(生物学) 人工智能 计算生物学 功能(生物学) 算法 基因预测 基因组 生物 计算机科学 遗传学
作者
Yuannong Ye,Dingfa Liang,Zhu Zeng
出处
期刊:Lecture notes in electrical engineering 卷期号:: 487-493 被引量:2
标识
DOI:10.1007/978-981-16-6554-7_54
摘要

Essential genes are indispensable for biological survival. Thus it is of great significance to identify and study essential genes. A machine learning method, K-Nearest Neighbor, is used for development of predicting essential bacterial genes. The homologous features, including sequence homology and functional homology, of the bacterial genomes are extracted for determining essential genes. Based on the features, we use K-Nearest Neighbor algorithm for determining of gene function. And we tune the minimum matching parameter (K) in the essential gene predicted model for building an optimal model of the Escherichia coli specificity model. The corresponding optimal parameter (K) is then extended to other bacterial essential genes predicting models. After cross validation, the highest accuracy is 0.89 while K between 5 and 7. Therefore, the features we extracted can increase the accuracy of the bacterial essential gene prediction. In the premise, we found that the prediction accuracy of the prediction model based on K-Nearest Neighbor was not significantly different in different evolutionary distances between organisms in the database and the investigated species. That means the machine learning model can be extended to more distant species. It wills have a better predictive performance for predicting essential genes of distant species than the usual sequence-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
johnz001完成签到,获得积分10
刚刚
leo_zjm完成签到,获得积分10
3秒前
4秒前
Jennie发布了新的文献求助10
4秒前
5秒前
Rqbnicsp完成签到,获得积分10
5秒前
lanheqingniao发布了新的文献求助10
6秒前
x夏天完成签到 ,获得积分10
6秒前
Ys发布了新的文献求助10
7秒前
7秒前
8秒前
小确幸完成签到,获得积分10
8秒前
852应助依依采纳,获得10
8秒前
半眠日记完成签到,获得积分20
10秒前
12秒前
完美世界应助斯文尔阳采纳,获得10
12秒前
猪猪hero应助积极松鼠采纳,获得10
12秒前
黑压压的帝企鹅完成签到,获得积分10
13秒前
14秒前
标致的耷发布了新的文献求助10
14秒前
zhaosh完成签到,获得积分10
15秒前
Lucas应助萧水白采纳,获得100
16秒前
hang发布了新的文献求助10
17秒前
xinyu发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
andrele应助Leo采纳,获得10
20秒前
24秒前
24秒前
Aurora.H发布了新的文献求助30
24秒前
ChouNen完成签到,获得积分10
25秒前
hang完成签到,获得积分10
28秒前
蝶衣发布了新的文献求助30
29秒前
Elsa发布了新的文献求助10
29秒前
脑洞疼应助隐形幻竹采纳,获得30
29秒前
Owen应助着急的绿兰采纳,获得10
32秒前
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172