Prediction of Coating Adhesion on Laser-Cleaned Metal Surfaces of Battery Cells Using Hyperspectral Imaging and Machine Learning

高光谱成像 涂层 计算机科学 VNIR公司 人工智能 支持向量机 汽车工程 材料科学 工程类 纳米技术
作者
Johannes Vater,Florian Gruber,Wulf Grählert,Sebastian Schneider,Alois Knoll
出处
期刊:Coatings [Multidisciplinary Digital Publishing Institute]
卷期号:11 (11): 1388-1388 被引量:4
标识
DOI:10.3390/coatings11111388
摘要

Electric vehicles are shaping the future of the automotive industry. The traction battery is one of the most important components of electric cars. To ensure that the battery operates safely, it is essential to physically and electrically separate the cells facing each other. Coating a cell with varnish helps achieve this goal. Current studies use a destructive method on a sampling basis, the cross-cut test, to investigate the coating quality. In this paper, we present a fast, nondestructive and inline alternative based on hyperspectral imaging and artificial intelligence. Therefore, battery cells are measured with hyperspectral cameras in the visible and near-infrared (VNIR and NIR) parts of the electromagnetic spectrum before and after cleaning then coated and finally subjected to cross-cut test to estimate coating adhesion. During the cross-cut test, the cell coating is destroyed. This work aims to replace cross-cut tests with hyperspectral imaging (HSI) and machine learning to achieve continuous quality control, protect the environment, and save costs. Therefore, machine learning models (logistic regression, random forest, and support vector machines) are used to predict cross-cut test results based on hyperspectral data. We show that it is possible to predict with an accuracy of ~75% whether problems with coating adhesion will occur. Hyperspectral measurements in the near-infrared part of the spectrum yielded the best results. The results show that the method is suitable for automated quality control and process control in battery cell coating, but still needs to be improved to achieve higher accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
uu完成签到 ,获得积分10
1秒前
完美世界应助hush采纳,获得10
1秒前
JoaquinH完成签到,获得积分10
2秒前
2秒前
庸人自扰完成签到,获得积分10
4秒前
暮色完成签到,获得积分10
6秒前
Lucas应助北彧采纳,获得10
6秒前
Felicity完成签到 ,获得积分10
6秒前
hush完成签到,获得积分20
7秒前
高高完成签到,获得积分20
8秒前
Cupid发布了新的文献求助30
8秒前
搜集达人应助信仰采纳,获得10
8秒前
威武的念波完成签到 ,获得积分10
8秒前
9秒前
求文献完成签到,获得积分10
10秒前
10秒前
Jasper应助一口蒜苗采纳,获得15
11秒前
heypee完成签到,获得积分10
12秒前
You完成签到 ,获得积分10
12秒前
Ava应助yzWang采纳,获得10
14秒前
Lsy发布了新的文献求助50
14秒前
14秒前
kotea完成签到,获得积分10
15秒前
科研通AI2S应助胡图图采纳,获得10
16秒前
暮色发布了新的文献求助10
17秒前
英俊的铭应助明亮的香薇采纳,获得10
17秒前
17秒前
kelvin发布了新的文献求助50
17秒前
17秒前
高高发布了新的文献求助10
20秒前
20秒前
20秒前
欣喜惜筠完成签到,获得积分10
21秒前
21秒前
21秒前
YuLu完成签到 ,获得积分10
22秒前
22秒前
甜橙汁完成签到,获得积分10
22秒前
大模型应助酸菜炖粉条采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547