已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Coating Adhesion on Laser-Cleaned Metal Surfaces of Battery Cells Using Hyperspectral Imaging and Machine Learning

高光谱成像 涂层 计算机科学 VNIR公司 人工智能 支持向量机 汽车工程 材料科学 工程类 纳米技术
作者
Johannes Vater,Florian Gruber,Wulf Grählert,Sebastian Schneider,Alois Knoll
出处
期刊:Coatings [MDPI AG]
卷期号:11 (11): 1388-1388 被引量:4
标识
DOI:10.3390/coatings11111388
摘要

Electric vehicles are shaping the future of the automotive industry. The traction battery is one of the most important components of electric cars. To ensure that the battery operates safely, it is essential to physically and electrically separate the cells facing each other. Coating a cell with varnish helps achieve this goal. Current studies use a destructive method on a sampling basis, the cross-cut test, to investigate the coating quality. In this paper, we present a fast, nondestructive and inline alternative based on hyperspectral imaging and artificial intelligence. Therefore, battery cells are measured with hyperspectral cameras in the visible and near-infrared (VNIR and NIR) parts of the electromagnetic spectrum before and after cleaning then coated and finally subjected to cross-cut test to estimate coating adhesion. During the cross-cut test, the cell coating is destroyed. This work aims to replace cross-cut tests with hyperspectral imaging (HSI) and machine learning to achieve continuous quality control, protect the environment, and save costs. Therefore, machine learning models (logistic regression, random forest, and support vector machines) are used to predict cross-cut test results based on hyperspectral data. We show that it is possible to predict with an accuracy of ~75% whether problems with coating adhesion will occur. Hyperspectral measurements in the near-infrared part of the spectrum yielded the best results. The results show that the method is suitable for automated quality control and process control in battery cell coating, but still needs to be improved to achieve higher accuracies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助无与伦比采纳,获得10
3秒前
边边完成签到,获得积分20
3秒前
666发布了新的文献求助10
3秒前
zjspidany应助qiuxuan100采纳,获得10
4秒前
4秒前
4秒前
rich完成签到,获得积分10
6秒前
7秒前
可爱的函函应助边边采纳,获得30
8秒前
哈密发布了新的文献求助10
8秒前
思源应助乐叻采纳,获得10
8秒前
9秒前
鲁晓涵发布了新的文献求助10
11秒前
artemis发布了新的文献求助10
11秒前
12秒前
oilmelech发布了新的文献求助10
15秒前
无与伦比发布了新的文献求助10
15秒前
16秒前
18秒前
21秒前
mqy完成签到,获得积分10
22秒前
普萘洛尔完成签到 ,获得积分20
22秒前
23秒前
zangzang完成签到 ,获得积分10
23秒前
mqy发布了新的文献求助10
25秒前
wanci应助无与伦比采纳,获得10
26秒前
两个轮发布了新的文献求助10
27秒前
30秒前
orixero应助RyanNeo采纳,获得30
31秒前
小蘑菇应助不准吃烤肉采纳,获得10
31秒前
36秒前
oilmelech完成签到,获得积分10
36秒前
脑洞疼应助QiranSheng采纳,获得10
37秒前
38秒前
万能图书馆应助两个轮采纳,获得10
39秒前
zzyan完成签到,获得积分10
40秒前
zhuwenjian发布了新的文献求助10
41秒前
踯躅&徘徊完成签到,获得积分10
43秒前
46秒前
深情安青应助南汐采纳,获得10
47秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314174
求助须知:如何正确求助?哪些是违规求助? 2946566
关于积分的说明 8530622
捐赠科研通 2622238
什么是DOI,文献DOI怎么找? 1434426
科研通“疑难数据库(出版商)”最低求助积分说明 665295
邀请新用户注册赠送积分活动 650838