Prediction of Coating Adhesion on Laser-Cleaned Metal Surfaces of Battery Cells Using Hyperspectral Imaging and Machine Learning

高光谱成像 涂层 计算机科学 VNIR公司 人工智能 支持向量机 汽车工程 材料科学 工程类 纳米技术
作者
Johannes Vater,Florian Gruber,Wulf Grählert,Sebastian Schneider,Alois Knoll
出处
期刊:Coatings [MDPI AG]
卷期号:11 (11): 1388-1388 被引量:4
标识
DOI:10.3390/coatings11111388
摘要

Electric vehicles are shaping the future of the automotive industry. The traction battery is one of the most important components of electric cars. To ensure that the battery operates safely, it is essential to physically and electrically separate the cells facing each other. Coating a cell with varnish helps achieve this goal. Current studies use a destructive method on a sampling basis, the cross-cut test, to investigate the coating quality. In this paper, we present a fast, nondestructive and inline alternative based on hyperspectral imaging and artificial intelligence. Therefore, battery cells are measured with hyperspectral cameras in the visible and near-infrared (VNIR and NIR) parts of the electromagnetic spectrum before and after cleaning then coated and finally subjected to cross-cut test to estimate coating adhesion. During the cross-cut test, the cell coating is destroyed. This work aims to replace cross-cut tests with hyperspectral imaging (HSI) and machine learning to achieve continuous quality control, protect the environment, and save costs. Therefore, machine learning models (logistic regression, random forest, and support vector machines) are used to predict cross-cut test results based on hyperspectral data. We show that it is possible to predict with an accuracy of ~75% whether problems with coating adhesion will occur. Hyperspectral measurements in the near-infrared part of the spectrum yielded the best results. The results show that the method is suitable for automated quality control and process control in battery cell coating, but still needs to be improved to achieve higher accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化学狗发布了新的文献求助10
刚刚
刚刚
浩浩完成签到,获得积分10
1秒前
胡图图完成签到,获得积分10
1秒前
包容的剑发布了新的文献求助10
2秒前
3秒前
小马甲应助细腻沅采纳,获得10
3秒前
4秒前
招财不肥完成签到,获得积分10
4秒前
4秒前
77完成签到,获得积分10
5秒前
NexusExplorer应助顾阿秀采纳,获得10
5秒前
5秒前
科研通AI5应助二二二采纳,获得10
6秒前
terrell完成签到,获得积分10
6秒前
David完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助Denmark采纳,获得10
7秒前
7秒前
望望旺仔牛奶完成签到,获得积分10
7秒前
香蕉觅云应助luoshi采纳,获得10
8秒前
Zn应助gnr2000采纳,获得10
8秒前
二小完成签到,获得积分20
8秒前
拼搏思卉完成签到,获得积分10
8秒前
内向音响发布了新的文献求助10
8秒前
上官若男应助曼尼采纳,获得10
9秒前
飞羽发布了新的文献求助10
9秒前
科研通AI2S应助song99采纳,获得10
9秒前
momi完成签到 ,获得积分10
9秒前
哈哈哈呢完成签到 ,获得积分20
9秒前
LiShin发布了新的文献求助10
9秒前
phylicia发布了新的文献求助10
10秒前
萝卜完成签到,获得积分10
10秒前
10秒前
sjj完成签到,获得积分10
11秒前
只道寻常发布了新的文献求助10
11秒前
灵巧坤完成签到,获得积分20
12秒前
澹台灭明完成签到,获得积分10
12秒前
含蓄的鹤发布了新的文献求助10
12秒前
K. G.完成签到,获得积分0
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762