Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma

医学 无线电技术 队列 肝细胞癌 比例危险模型 接收机工作特性 放射科 阶段(地层学) 放射性武器 危险系数 肿瘤科 人工智能 内科学 置信区间 计算机科学 古生物学 生物
作者
Yuhan Yang,Yin Zhou,Chen Zhou,Xuelei Ma
出处
期刊:Ejso [Elsevier]
卷期号:48 (5): 1068-1077 被引量:36
标识
DOI:10.1016/j.ejso.2021.11.120
摘要

To evaluate the performance of a deep learning (DL)-based radiomics strategy on contrast-enhanced computed tomography (CT) to predict microvascular invasion (MVI) status and clinical outcomes, recurrence-free survival (RFS) and overall survival (OS) in patients with early stage hepatocellular carcinoma (HCC) receiving surgical resection.All 283 eligible patients were included retrospectively between January 2008 and December 2015, and assigned into the training cohort (n = 198) and the testing cohort (n = 85). We extracted radiomics features via handcrafted radiomics analysis manually and DL analysis of pretrained convolutional neural networks via transfer learning automatically. Support vector machine was adopted as the classifier. A clinical-radiological model for MVI status integrated significant clinical features and the radiological signature generated from the radiological model with the optimal area under the receiver operating characteristics curve (AUC) in the testing cohort. Otherwise, DL-based prognostic models were constructed in prediction of recurrence and mortality via Cox proportional hazard analysis.The clinical-radiological model for MVI represented an AUC of 0.909, accuracy of 96.47%, sensitivity of 90.91%, specificity of 97.30%, positive predictive value of 83.33%, and negative predictive value of 98.63% in the testing cohort. The clinical-radiological models for identification of RFS and OS outperformed prediction performance of the clinical model or the DL signature alone. The DL-based integrated model for prognostication showed great predictive value with significant classification and discrimination abilities after validation.The integrated DL-based radiomics models achieved accurate preoperative prediction of MVI status, and might facilitate predicting tumor recurrence and mortality in order to optimize clinical decisions for patients with early stage HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好看的花花鱼完成签到 ,获得积分10
刚刚
圆圆完成签到,获得积分10
3秒前
4秒前
个性的荆完成签到,获得积分10
5秒前
自觉沛文完成签到,获得积分10
8秒前
Jackie完成签到,获得积分10
8秒前
雪泥鸿爪发布了新的文献求助10
8秒前
retortt完成签到,获得积分10
8秒前
吉星高照完成签到,获得积分10
9秒前
善学以致用应助青1995采纳,获得10
9秒前
vic303完成签到,获得积分20
9秒前
淡出完成签到,获得积分20
11秒前
岚落完成签到,获得积分10
12秒前
迷路宛筠完成签到 ,获得积分10
12秒前
duoduo完成签到,获得积分10
13秒前
雪泥鸿爪完成签到,获得积分10
15秒前
dzzza完成签到,获得积分10
15秒前
田様应助liu采纳,获得10
15秒前
NiNi完成签到,获得积分10
17秒前
1a完成签到 ,获得积分10
19秒前
19秒前
FF完成签到 ,获得积分10
19秒前
19秒前
shirley完成签到,获得积分10
19秒前
科研通AI6应助热心的发箍采纳,获得10
19秒前
charint完成签到,获得积分10
20秒前
所所应助yuuka采纳,获得10
23秒前
23秒前
耶稣与梦完成签到,获得积分10
24秒前
Soleil发布了新的文献求助10
24秒前
激昂的秀发完成签到,获得积分10
25秒前
青1995发布了新的文献求助10
25秒前
科研通AI2S应助乔沃维奇采纳,获得10
26秒前
饱满的荧完成签到 ,获得积分10
27秒前
科研通AI6应助屿溡采纳,获得10
28秒前
28秒前
33333完成签到 ,获得积分10
29秒前
短巷完成签到 ,获得积分10
30秒前
蟹治猿完成签到 ,获得积分10
31秒前
23完成签到,获得积分10
32秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378909
求助须知:如何正确求助?哪些是违规求助? 4503292
关于积分的说明 14015481
捐赠科研通 4412031
什么是DOI,文献DOI怎么找? 2423615
邀请新用户注册赠送积分活动 1416548
关于科研通互助平台的介绍 1394032