Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma

医学 无线电技术 队列 肝细胞癌 比例危险模型 接收机工作特性 放射科 阶段(地层学) 放射性武器 危险系数 肿瘤科 人工智能 内科学 置信区间 计算机科学 古生物学 生物
作者
Yuhan Yang,Yin Zhou,Chen Zhou,Xuelei Ma
出处
期刊:Ejso [Elsevier BV]
卷期号:48 (5): 1068-1077 被引量:35
标识
DOI:10.1016/j.ejso.2021.11.120
摘要

To evaluate the performance of a deep learning (DL)-based radiomics strategy on contrast-enhanced computed tomography (CT) to predict microvascular invasion (MVI) status and clinical outcomes, recurrence-free survival (RFS) and overall survival (OS) in patients with early stage hepatocellular carcinoma (HCC) receiving surgical resection.All 283 eligible patients were included retrospectively between January 2008 and December 2015, and assigned into the training cohort (n = 198) and the testing cohort (n = 85). We extracted radiomics features via handcrafted radiomics analysis manually and DL analysis of pretrained convolutional neural networks via transfer learning automatically. Support vector machine was adopted as the classifier. A clinical-radiological model for MVI status integrated significant clinical features and the radiological signature generated from the radiological model with the optimal area under the receiver operating characteristics curve (AUC) in the testing cohort. Otherwise, DL-based prognostic models were constructed in prediction of recurrence and mortality via Cox proportional hazard analysis.The clinical-radiological model for MVI represented an AUC of 0.909, accuracy of 96.47%, sensitivity of 90.91%, specificity of 97.30%, positive predictive value of 83.33%, and negative predictive value of 98.63% in the testing cohort. The clinical-radiological models for identification of RFS and OS outperformed prediction performance of the clinical model or the DL signature alone. The DL-based integrated model for prognostication showed great predictive value with significant classification and discrimination abilities after validation.The integrated DL-based radiomics models achieved accurate preoperative prediction of MVI status, and might facilitate predicting tumor recurrence and mortality in order to optimize clinical decisions for patients with early stage HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
糖糖发布了新的文献求助10
1秒前
包子完成签到,获得积分10
1秒前
1秒前
1秒前
简单面包发布了新的文献求助10
1秒前
隐形曼青应助coolnomadic采纳,获得10
2秒前
可爱的函函应助Lm采纳,获得10
2秒前
xx发布了新的文献求助10
3秒前
Hello应助最爱果汁采纳,获得10
4秒前
Cora完成签到,获得积分10
5秒前
6秒前
dafhluih发布了新的文献求助10
6秒前
田然完成签到,获得积分20
7秒前
谭yuanjun发布了新的文献求助10
7秒前
郑zheng完成签到 ,获得积分10
8秒前
海的呼唤发布了新的文献求助10
10秒前
东方烨伟发布了新的文献求助10
12秒前
15秒前
15秒前
GuMingyang完成签到,获得积分10
17秒前
17秒前
科研通AI5应助年轻的蘑菇采纳,获得10
18秒前
彭于彦祖应助科研通管家采纳,获得20
18秒前
顾矜应助科研通管家采纳,获得10
19秒前
彭于彦祖应助科研通管家采纳,获得50
19秒前
酷波er应助科研通管家采纳,获得30
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
子凡应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
简单面包完成签到,获得积分10
19秒前
20秒前
qianli完成签到,获得积分10
20秒前
tian发布了新的文献求助30
21秒前
bkagyin应助栗子采纳,获得10
21秒前
21秒前
22秒前
完美世界应助Butterfly采纳,获得10
23秒前
23秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701555
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876024
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625252
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742623