Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma

医学 无线电技术 队列 肝细胞癌 比例危险模型 接收机工作特性 放射科 阶段(地层学) 放射性武器 危险系数 肿瘤科 人工智能 内科学 置信区间 计算机科学 古生物学 生物
作者
Yuhan Yang,Yin Zhou,Chen Zhou,Xuelei Ma
出处
期刊:Ejso [Elsevier BV]
卷期号:48 (5): 1068-1077 被引量:36
标识
DOI:10.1016/j.ejso.2021.11.120
摘要

To evaluate the performance of a deep learning (DL)-based radiomics strategy on contrast-enhanced computed tomography (CT) to predict microvascular invasion (MVI) status and clinical outcomes, recurrence-free survival (RFS) and overall survival (OS) in patients with early stage hepatocellular carcinoma (HCC) receiving surgical resection.All 283 eligible patients were included retrospectively between January 2008 and December 2015, and assigned into the training cohort (n = 198) and the testing cohort (n = 85). We extracted radiomics features via handcrafted radiomics analysis manually and DL analysis of pretrained convolutional neural networks via transfer learning automatically. Support vector machine was adopted as the classifier. A clinical-radiological model for MVI status integrated significant clinical features and the radiological signature generated from the radiological model with the optimal area under the receiver operating characteristics curve (AUC) in the testing cohort. Otherwise, DL-based prognostic models were constructed in prediction of recurrence and mortality via Cox proportional hazard analysis.The clinical-radiological model for MVI represented an AUC of 0.909, accuracy of 96.47%, sensitivity of 90.91%, specificity of 97.30%, positive predictive value of 83.33%, and negative predictive value of 98.63% in the testing cohort. The clinical-radiological models for identification of RFS and OS outperformed prediction performance of the clinical model or the DL signature alone. The DL-based integrated model for prognostication showed great predictive value with significant classification and discrimination abilities after validation.The integrated DL-based radiomics models achieved accurate preoperative prediction of MVI status, and might facilitate predicting tumor recurrence and mortality in order to optimize clinical decisions for patients with early stage HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yannnis发布了新的文献求助10
刚刚
孙福禄应助Star1983采纳,获得10
刚刚
刚刚
1秒前
Demonmaster完成签到,获得积分10
1秒前
元气糖发布了新的文献求助10
1秒前
凝望那片海2020完成签到,获得积分10
1秒前
清爽问夏发布了新的文献求助10
1秒前
2秒前
2秒前
Lee完成签到 ,获得积分10
2秒前
2秒前
钱小二发布了新的文献求助10
3秒前
3秒前
315947完成签到,获得积分10
3秒前
4秒前
冰阔落发布了新的文献求助10
4秒前
鳐鱼完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
李健的小迷弟应助egnaro采纳,获得30
4秒前
没什么是看文献解决不了的完成签到,获得积分10
5秒前
害怕的凡英完成签到,获得积分10
5秒前
收集快乐发布了新的文献求助10
5秒前
青云发布了新的文献求助10
6秒前
可可完成签到 ,获得积分10
6秒前
Dank1ng完成签到,获得积分10
6秒前
星辰大海应助rinki01采纳,获得10
6秒前
哈哈哈发布了新的文献求助10
7秒前
活泼的南风完成签到 ,获得积分10
7秒前
T拐拐发布了新的文献求助10
8秒前
慕青应助yannnis采纳,获得10
8秒前
上官若男应助明明采纳,获得10
8秒前
上官若男应助过意采纳,获得10
8秒前
qly发布了新的文献求助10
8秒前
wangyalei发布了新的文献求助10
9秒前
孙福禄应助void科学家采纳,获得10
9秒前
逝者如斯只是看着完成签到,获得积分10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600