Subgraph Federated Learning with Missing Neighbor Generation

计算机科学 图形 一般化 理论计算机科学 火车 诱导子图同构问题 机器学习 数据挖掘 人工智能 数学 地理 折线图 数学分析 地图学 电压图
作者
Ke Zhang,Carl Yang,Xiaoxiao Li,Lichao Sun,Siu Ming Yiu
出处
期刊:Cornell University - arXiv 被引量:62
标识
DOI:10.48550/arxiv.2106.13430
摘要

Graphs have been widely used in data mining and machine learning due to their unique representation of real-world objects and their interactions. As graphs are getting bigger and bigger nowadays, it is common to see their subgraphs separately collected and stored in multiple local systems. Therefore, it is natural to consider the subgraph federated learning setting, where each local system holds a small subgraph that may be biased from the distribution of the whole graph. Hence, the subgraph federated learning aims to collaboratively train a powerful and generalizable graph mining model without directly sharing their graph data. In this work, towards the novel yet realistic setting of subgraph federated learning, we propose two major techniques: (1) FedSage, which trains a GraphSage model based on FedAvg to integrate node features, link structures, and task labels on multiple local subgraphs; (2) FedSage+, which trains a missing neighbor generator along FedSage to deal with missing links across local subgraphs. Empirical results on four real-world graph datasets with synthesized subgraph federated learning settings demonstrate the effectiveness and efficiency of our proposed techniques. At the same time, consistent theoretical implications are made towards their generalization ability on the global graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助笑笑的妙松采纳,获得10
1秒前
iwooto完成签到,获得积分10
1秒前
南风完成签到 ,获得积分10
1秒前
zongzi12138完成签到,获得积分0
1秒前
泡芙2完成签到 ,获得积分10
1秒前
11完成签到,获得积分10
1秒前
Sirene完成签到,获得积分20
1秒前
wweq发布了新的文献求助10
2秒前
2秒前
2秒前
周涛发布了新的文献求助10
3秒前
Dean应助HEHXU采纳,获得50
3秒前
高登登完成签到,获得积分20
3秒前
奈落完成签到,获得积分20
3秒前
lll发布了新的文献求助10
3秒前
完美世界应助liang采纳,获得10
3秒前
细腻天德完成签到,获得积分10
3秒前
cherish'发布了新的文献求助10
4秒前
充电宝应助飞奔小子采纳,获得10
4秒前
lyx完成签到 ,获得积分10
4秒前
Lynn666完成签到,获得积分10
4秒前
4秒前
4秒前
Owen应助赵念婉采纳,获得10
5秒前
5秒前
6秒前
KK完成签到,获得积分10
6秒前
烟花应助yan采纳,获得10
6秒前
6秒前
wjy完成签到,获得积分10
6秒前
Kevin完成签到,获得积分10
7秒前
共渡完成签到,获得积分10
7秒前
吴家豪完成签到,获得积分10
8秒前
乐乐应助拿抓抓拿采纳,获得10
8秒前
翟庆春完成签到,获得积分10
8秒前
8秒前
8秒前
ybyb完成签到,获得积分10
8秒前
8秒前
May_9527完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997