Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality

医学 冠状动脉疾病 放射科 钙化 心脏病学 冠状动脉钙 冠状动脉造影 心肌梗塞
作者
Chun Yu Liu,Chun Xiang Tang,Xiao Lei Zhang,Sui Chen,Yuan Xie,Xin Yuan Zhang,Hong Qiao,Chang Sheng Zhou,Peng Xu,Meng Jie Lu,Jian Hua Li,Guangming Lu,Long Jiang Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:142: 109835-109835 被引量:31
标识
DOI:10.1016/j.ejrad.2021.109835
摘要

Abstract

Objectives

To investigate the effect of reader experience, calcification and image quality on the performance of deep learning (DL) powered coronary CT angiography (CCTA) in automatically detecting obstructive coronary artery disease (CAD) with invasive coronary angiography (ICA) as reference standard.

Methods

A total of 165 patients (680 vessels and 1505 segments) were included in this study. Three sessions were performed in order: (1) The artificial intelligence (AI) software automatically processed CCTA images, stenosis degree and processing time were recorded for each case; (2) Six cardiovascular radiologists with different experiences (low/ intermediate/ high experience) independently performed image post-processing and interpretation of CCTA, (3) AI + human reading was performed. Luminal stenosis ≥50% was defined as obstructive CAD in ICA and CCTA. Diagnostic performances of AI, human reading and AI + human reading were evaluated and compared on a per-patient, per-vessel and per-segment basis with ICA as reference standard. The effects of calcification and image quality on the diagnostic performance were also studied.

Results

The average post-processing and interpretation times of AI was 2.3 ± 0.6 min per case, reduced by 76%, 72%, 69% compared with low/ intermediate/ high experience readers (all P < 0.001), respectively. On a per-patient, per-vessel and per-segment basis, with ICA as reference method, the AI overall diagnostic sensitivity for detecting obstructive CAD were 90.5%, 81.4%, 72.9%, the specificity was 82.3%, 93.9%, 95.0%, with the corresponding areas under the curve (AUCs) of 0.90, 0.90, 0.87, respectively. Compared to human readers, the diagnostic performance of AI was higher than that of low experience readers (all P < 0.001). The diagnostic performance of AI + human reading was higher than human reading alone, and AI + human readers' ability to correctly reclassify obstructive CAD was also improved, especially for low experience readers (Per-patient, the net reclassification improvement (NRI) = 0.085; per-vessel, NRI = 0.070; and per-segment, NRI = 0.068, all P < 0.001). The diagnostic performance of AI was not significantly affected by calcification and image quality (all P > 0.05).

Conclusions

AI can substantially shorten the post-processing time, while AI + human reading model can significantly improve the diagnostic performance compared with human readers, especially for inexperienced readers, regardless of calcification severity and image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sicie完成签到,获得积分10
刚刚
丰富思枫完成签到 ,获得积分10
1秒前
梵高完成签到,获得积分10
2秒前
隐形的语海完成签到,获得积分10
2秒前
小任同学要努力完成签到 ,获得积分10
2秒前
天晴完成签到,获得积分10
2秒前
2秒前
carbonhan完成签到,获得积分10
3秒前
朴实的河马完成签到,获得积分10
3秒前
芹菜不甜完成签到,获得积分10
4秒前
xiao123完成签到,获得积分20
4秒前
4秒前
4秒前
脑洞疼应助栗子采纳,获得10
5秒前
纯真小笼包完成签到 ,获得积分10
5秒前
黄先生完成签到,获得积分10
6秒前
6秒前
6秒前
调皮惜天完成签到,获得积分10
6秒前
cc完成签到,获得积分10
6秒前
王博雅完成签到,获得积分10
7秒前
要长高了完成签到,获得积分10
7秒前
ddd完成签到,获得积分10
7秒前
颖儿完成签到,获得积分10
8秒前
优雅的盼夏完成签到,获得积分10
8秒前
皮皮蛙完成签到,获得积分10
9秒前
9秒前
suhanxing完成签到,获得积分20
9秒前
卡卡完成签到,获得积分10
10秒前
邓代容发布了新的文献求助10
10秒前
酰砜发布了新的文献求助10
10秒前
葵小葵完成签到,获得积分10
10秒前
健忘的哈密瓜完成签到,获得积分10
11秒前
Amosummer完成签到,获得积分10
11秒前
无限的小懒虫完成签到,获得积分10
11秒前
zhangruiii完成签到 ,获得积分10
11秒前
12秒前
XF完成签到,获得积分10
13秒前
于是真的完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433058
求助须知:如何正确求助?哪些是违规求助? 4545536
关于积分的说明 14196700
捐赠科研通 4464997
什么是DOI,文献DOI怎么找? 2447427
邀请新用户注册赠送积分活动 1438645
关于科研通互助平台的介绍 1415645