Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality

医学 冠状动脉疾病 放射科 钙化 心脏病学 冠状动脉钙 冠状动脉造影 心肌梗塞
作者
Chun Yu Liu,Chun Xiang Tang,Xiao Lei Zhang,Sui Chen,Yuan Xie,Xin Yuan Zhang,Hong Qiao,Chang Sheng Zhou,Peng Xu,Mengjie Lu,Jianhua Li,Guangming Lu,Long Jiang Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:142: 109835-109835 被引量:26
标识
DOI:10.1016/j.ejrad.2021.109835
摘要

Abstract

Objectives

To investigate the effect of reader experience, calcification and image quality on the performance of deep learning (DL) powered coronary CT angiography (CCTA) in automatically detecting obstructive coronary artery disease (CAD) with invasive coronary angiography (ICA) as reference standard.

Methods

A total of 165 patients (680 vessels and 1505 segments) were included in this study. Three sessions were performed in order: (1) The artificial intelligence (AI) software automatically processed CCTA images, stenosis degree and processing time were recorded for each case; (2) Six cardiovascular radiologists with different experiences (low/ intermediate/ high experience) independently performed image post-processing and interpretation of CCTA, (3) AI + human reading was performed. Luminal stenosis ≥50% was defined as obstructive CAD in ICA and CCTA. Diagnostic performances of AI, human reading and AI + human reading were evaluated and compared on a per-patient, per-vessel and per-segment basis with ICA as reference standard. The effects of calcification and image quality on the diagnostic performance were also studied.

Results

The average post-processing and interpretation times of AI was 2.3 ± 0.6 min per case, reduced by 76%, 72%, 69% compared with low/ intermediate/ high experience readers (all P < 0.001), respectively. On a per-patient, per-vessel and per-segment basis, with ICA as reference method, the AI overall diagnostic sensitivity for detecting obstructive CAD were 90.5%, 81.4%, 72.9%, the specificity was 82.3%, 93.9%, 95.0%, with the corresponding areas under the curve (AUCs) of 0.90, 0.90, 0.87, respectively. Compared to human readers, the diagnostic performance of AI was higher than that of low experience readers (all P < 0.001). The diagnostic performance of AI + human reading was higher than human reading alone, and AI + human readers' ability to correctly reclassify obstructive CAD was also improved, especially for low experience readers (Per-patient, the net reclassification improvement (NRI) = 0.085; per-vessel, NRI = 0.070; and per-segment, NRI = 0.068, all P < 0.001). The diagnostic performance of AI was not significantly affected by calcification and image quality (all P > 0.05).

Conclusions

AI can substantially shorten the post-processing time, while AI + human reading model can significantly improve the diagnostic performance compared with human readers, especially for inexperienced readers, regardless of calcification severity and image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周凡淇发布了新的文献求助10
刚刚
安代桃完成签到,获得积分10
刚刚
刘亚博发布了新的文献求助10
1秒前
慕青应助11采纳,获得10
2秒前
穆紫应助hao采纳,获得10
3秒前
3秒前
4秒前
凉介完成签到,获得积分10
4秒前
朴素羊发布了新的文献求助10
5秒前
Xwu关闭了Xwu文献求助
5秒前
123发布了新的文献求助10
6秒前
ssdddq完成签到 ,获得积分10
7秒前
Hou发布了新的文献求助10
8秒前
YY完成签到,获得积分10
8秒前
Q123ba叭完成签到 ,获得积分10
9秒前
JamesPei应助无辜忆寒采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
wang发布了新的文献求助30
11秒前
pcr163应助CL采纳,获得100
12秒前
ljr完成签到 ,获得积分10
13秒前
机智秋莲发布了新的文献求助10
13秒前
13秒前
爆米花应助sxw2088采纳,获得10
14秒前
科研通AI2S应助苹果蜗牛采纳,获得10
16秒前
Myronhaoyuan完成签到,获得积分10
17秒前
18秒前
Alexwww发布了新的文献求助10
18秒前
11发布了新的文献求助10
18秒前
木子发布了新的文献求助10
19秒前
19秒前
19秒前
科研通AI2S应助澳臻白采纳,获得10
20秒前
汉堡包应助潇洒的雁丝采纳,获得10
20秒前
小白完成签到,获得积分10
21秒前
21秒前
baihehuakai发布了新的文献求助10
24秒前
24秒前
Lazarus_x发布了新的文献求助10
24秒前
李沐籽发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328