Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality

医学 冠状动脉疾病 放射科 钙化 心脏病学 冠状动脉钙 冠状动脉造影 心肌梗塞
作者
Chun Yu Liu,Chun Xiang Tang,Xiao Lei Zhang,Sui Chen,Yuan Xie,Xin Yuan Zhang,Hong Qiao,Chang Sheng Zhou,Peng Xu,Meng Jie Lu,Jian Hua Li,Guangming Lu,Long Jiang Zhang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:142: 109835-109835 被引量:31
标识
DOI:10.1016/j.ejrad.2021.109835
摘要

Abstract

Objectives

To investigate the effect of reader experience, calcification and image quality on the performance of deep learning (DL) powered coronary CT angiography (CCTA) in automatically detecting obstructive coronary artery disease (CAD) with invasive coronary angiography (ICA) as reference standard.

Methods

A total of 165 patients (680 vessels and 1505 segments) were included in this study. Three sessions were performed in order: (1) The artificial intelligence (AI) software automatically processed CCTA images, stenosis degree and processing time were recorded for each case; (2) Six cardiovascular radiologists with different experiences (low/ intermediate/ high experience) independently performed image post-processing and interpretation of CCTA, (3) AI + human reading was performed. Luminal stenosis ≥50% was defined as obstructive CAD in ICA and CCTA. Diagnostic performances of AI, human reading and AI + human reading were evaluated and compared on a per-patient, per-vessel and per-segment basis with ICA as reference standard. The effects of calcification and image quality on the diagnostic performance were also studied.

Results

The average post-processing and interpretation times of AI was 2.3 ± 0.6 min per case, reduced by 76%, 72%, 69% compared with low/ intermediate/ high experience readers (all P < 0.001), respectively. On a per-patient, per-vessel and per-segment basis, with ICA as reference method, the AI overall diagnostic sensitivity for detecting obstructive CAD were 90.5%, 81.4%, 72.9%, the specificity was 82.3%, 93.9%, 95.0%, with the corresponding areas under the curve (AUCs) of 0.90, 0.90, 0.87, respectively. Compared to human readers, the diagnostic performance of AI was higher than that of low experience readers (all P < 0.001). The diagnostic performance of AI + human reading was higher than human reading alone, and AI + human readers' ability to correctly reclassify obstructive CAD was also improved, especially for low experience readers (Per-patient, the net reclassification improvement (NRI) = 0.085; per-vessel, NRI = 0.070; and per-segment, NRI = 0.068, all P < 0.001). The diagnostic performance of AI was not significantly affected by calcification and image quality (all P > 0.05).

Conclusions

AI can substantially shorten the post-processing time, while AI + human reading model can significantly improve the diagnostic performance compared with human readers, especially for inexperienced readers, regardless of calcification severity and image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助北海采纳,获得10
刚刚
刚刚
奋斗水香发布了新的文献求助10
刚刚
淡淡智宸发布了新的文献求助10
刚刚
田様应助脉动采纳,获得10
刚刚
2秒前
vinity完成签到,获得积分10
2秒前
3秒前
dhjic完成签到 ,获得积分10
4秒前
在水一方应助汝桢采纳,获得10
4秒前
5秒前
5秒前
ldz完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
7秒前
8秒前
落后的惜梦完成签到,获得积分10
8秒前
9秒前
小蘑菇应助hyw采纳,获得10
9秒前
gggggggbao发布了新的文献求助10
9秒前
燕麦大王发布了新的文献求助10
9秒前
10秒前
无花果应助hehe采纳,获得30
10秒前
ldz发布了新的文献求助10
11秒前
阿花阿花发布了新的文献求助10
11秒前
汝桢完成签到,获得积分10
12秒前
马开峰发布了新的文献求助10
12秒前
12秒前
13秒前
胡雨轩发布了新的文献求助10
13秒前
月亮发布了新的文献求助10
13秒前
leyi完成签到,获得积分20
13秒前
13秒前
13秒前
852应助白河采纳,获得30
14秒前
怡然诗霜完成签到,获得积分10
14秒前
汝桢发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968781
求助须知:如何正确求助?哪些是违规求助? 4225990
关于积分的说明 13161443
捐赠科研通 4013136
什么是DOI,文献DOI怎么找? 2195894
邀请新用户注册赠送积分活动 1209316
关于科研通互助平台的介绍 1123362