Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager

高光谱成像 主成分分析 支持向量机 人工智能 模式识别(心理学) 计算机科学 双模 遥感 地质学 工程类 航空航天工程
作者
Changwei Jiao,Zhanpeng Xu,Qiuwan Bian,Erik Forsberg,Qin Tan,Xin Peng,Sailing He
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:261: 120054-120054 被引量:22
标识
DOI:10.1016/j.saa.2021.120054
摘要

A dual-mode microscopic hyperspectral imager (DMHI) combined with a machine learning algorithm for the purpose of classifying origins and varieties of Tetrastigma hemsleyanum (T. hemsleyanum) was developed. By switching the illumination source, the DMHI can operate in reflection imaging and fluorescence detection modes. The DMHI system has excellent performance with spatial and spectral resolutions of 27.8 μm and 3 nm, respectively. To verify the capability of the DMHI system, a series of classification experiments of T. hemsleyanum were conducted. Captured hyperspectral datasets were analyzed using principal component analysis (PCA) for dimensional reduction, and a support vector machine (SVM) model was used for classification. In reflection microscopic hyperspectral imaging (RMHI) mode, the classification accuracies of T. hemsleyanum origins and varieties were 96.3% and 97.3%, respectively, while in fluorescence microscopic hyperspectral imaging (FMHI) mode, the classification accuracies were 97.3% and 100%, respectively. Combining datasets in dual mode, excellent predictions of origin and variety were realized by the trained model, both with a 97.5% accuracy on a newly measured test set. The results show that the DMHI system is capable of T. hemsleyanum origin and variety classification, and has the potential for non-invasive detection and rapid quality assessment of various kinds of medicinal herbs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蓦然发布了新的文献求助10
1秒前
2秒前
大模型应助香蕉曼寒采纳,获得10
3秒前
桐桐应助嗯呢采纳,获得10
3秒前
zhangyapeng完成签到,获得积分10
4秒前
风中秋天发布了新的文献求助10
4秒前
顾矜应助ibigbird采纳,获得10
5秒前
5秒前
5秒前
lhz完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
MAY发布了新的文献求助10
9秒前
Echopotter完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Joker完成签到,获得积分0
11秒前
11秒前
ccm应助青于采纳,获得10
11秒前
斗罗大陆完成签到,获得积分10
13秒前
香蕉曼寒发布了新的文献求助10
13秒前
14秒前
追梦发布了新的文献求助10
15秒前
15秒前
浮游应助Liu采纳,获得10
16秒前
淡然的夜柳完成签到,获得积分10
17秒前
优雅醉山发布了新的文献求助10
17秒前
19秒前
ibigbird发布了新的文献求助10
20秒前
所所应助了了采纳,获得10
21秒前
燕燕于飞发布了新的文献求助10
21秒前
22秒前
小杨发布了新的文献求助10
25秒前
科研顺利发布了新的文献求助10
27秒前
桂圆干发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563503
求助须知:如何正确求助?哪些是违规求助? 4648366
关于积分的说明 14684601
捐赠科研通 4590315
什么是DOI,文献DOI怎么找? 2518435
邀请新用户注册赠送积分活动 1491125
关于科研通互助平台的介绍 1462426