Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager

高光谱成像 主成分分析 支持向量机 人工智能 模式识别(心理学) 计算机科学 双模 遥感 地质学 工程类 航空航天工程
作者
Changwei Jiao,Zhanpeng Xu,Qiuwan Bian,Erik Forsberg,Qin Tan,Xin Peng,Sailing He
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:261: 120054-120054 被引量:22
标识
DOI:10.1016/j.saa.2021.120054
摘要

A dual-mode microscopic hyperspectral imager (DMHI) combined with a machine learning algorithm for the purpose of classifying origins and varieties of Tetrastigma hemsleyanum (T. hemsleyanum) was developed. By switching the illumination source, the DMHI can operate in reflection imaging and fluorescence detection modes. The DMHI system has excellent performance with spatial and spectral resolutions of 27.8 μm and 3 nm, respectively. To verify the capability of the DMHI system, a series of classification experiments of T. hemsleyanum were conducted. Captured hyperspectral datasets were analyzed using principal component analysis (PCA) for dimensional reduction, and a support vector machine (SVM) model was used for classification. In reflection microscopic hyperspectral imaging (RMHI) mode, the classification accuracies of T. hemsleyanum origins and varieties were 96.3% and 97.3%, respectively, while in fluorescence microscopic hyperspectral imaging (FMHI) mode, the classification accuracies were 97.3% and 100%, respectively. Combining datasets in dual mode, excellent predictions of origin and variety were realized by the trained model, both with a 97.5% accuracy on a newly measured test set. The results show that the DMHI system is capable of T. hemsleyanum origin and variety classification, and has the potential for non-invasive detection and rapid quality assessment of various kinds of medicinal herbs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助昏睡的绿海采纳,获得10
刚刚
1秒前
大大的西瓜完成签到 ,获得积分10
5秒前
华仔应助XYN1采纳,获得10
6秒前
6秒前
A阿澍发布了新的文献求助30
6秒前
丘比特应助TMX采纳,获得10
8秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
无奈满天发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
18秒前
19秒前
zhou269完成签到,获得积分10
21秒前
在逃公主许翠花完成签到,获得积分10
21秒前
littleblack发布了新的文献求助10
22秒前
TMX发布了新的文献求助10
22秒前
22秒前
DaiTing发布了新的文献求助10
22秒前
23秒前
简单点发布了新的文献求助10
23秒前
华仔应助无奈满天采纳,获得10
23秒前
fjejj发布了新的文献求助10
24秒前
sisi发布了新的文献求助10
25秒前
华仔完成签到,获得积分10
27秒前
华仔应助特梅头采纳,获得10
29秒前
30秒前
无奈满天完成签到,获得积分10
31秒前
yyuu完成签到,获得积分10
34秒前
35秒前
36秒前
36秒前
36秒前
sisi完成签到,获得积分20
36秒前
打打应助我晕豆芽采纳,获得10
36秒前
37秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052