Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager

高光谱成像 主成分分析 支持向量机 人工智能 模式识别(心理学) 计算机科学 双模 遥感 地质学 工程类 航空航天工程
作者
Changwei Jiao,Zhanpeng Xu,Qiuwan Bian,Erik Forsberg,Qin Tan,Xin Peng,Sailing He
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:261: 120054-120054 被引量:22
标识
DOI:10.1016/j.saa.2021.120054
摘要

A dual-mode microscopic hyperspectral imager (DMHI) combined with a machine learning algorithm for the purpose of classifying origins and varieties of Tetrastigma hemsleyanum (T. hemsleyanum) was developed. By switching the illumination source, the DMHI can operate in reflection imaging and fluorescence detection modes. The DMHI system has excellent performance with spatial and spectral resolutions of 27.8 μm and 3 nm, respectively. To verify the capability of the DMHI system, a series of classification experiments of T. hemsleyanum were conducted. Captured hyperspectral datasets were analyzed using principal component analysis (PCA) for dimensional reduction, and a support vector machine (SVM) model was used for classification. In reflection microscopic hyperspectral imaging (RMHI) mode, the classification accuracies of T. hemsleyanum origins and varieties were 96.3% and 97.3%, respectively, while in fluorescence microscopic hyperspectral imaging (FMHI) mode, the classification accuracies were 97.3% and 100%, respectively. Combining datasets in dual mode, excellent predictions of origin and variety were realized by the trained model, both with a 97.5% accuracy on a newly measured test set. The results show that the DMHI system is capable of T. hemsleyanum origin and variety classification, and has the potential for non-invasive detection and rapid quality assessment of various kinds of medicinal herbs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助源源采纳,获得10
刚刚
啦啦完成签到,获得积分10
刚刚
anguo完成签到,获得积分10
1秒前
1秒前
试试试完成签到 ,获得积分10
3秒前
WN完成签到,获得积分10
3秒前
丘比特应助春夏采纳,获得10
4秒前
4秒前
yesiDo完成签到,获得积分10
5秒前
桐桐应助TingWan采纳,获得10
5秒前
ShuY完成签到,获得积分10
5秒前
5秒前
sxiao18应助慈祥的孤兰采纳,获得10
7秒前
CodeCraft应助小小怪采纳,获得30
7秒前
10秒前
哈哈发布了新的文献求助10
10秒前
eric完成签到,获得积分10
10秒前
11秒前
霸气的草莓完成签到,获得积分10
11秒前
雪白的冰薇完成签到 ,获得积分10
11秒前
共享精神应助优秀不愁采纳,获得10
11秒前
12秒前
义气的猫咪完成签到,获得积分10
12秒前
13秒前
13秒前
冷酷的风华完成签到,获得积分10
13秒前
明理冰淇淋完成签到,获得积分10
14秒前
14秒前
benppt完成签到,获得积分10
14秒前
天天快乐应助郑小凝采纳,获得10
15秒前
不是省油的灯完成签到,获得积分10
15秒前
jfaioe完成签到,获得积分10
15秒前
义气猫咪完成签到 ,获得积分10
17秒前
17秒前
英姑应助ry采纳,获得30
17秒前
chelx发布了新的文献求助10
18秒前
18秒前
19秒前
大猫发布了新的文献求助20
19秒前
蜜蜂威士忌完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587