ToStaGAN: An end-to-end two-stage generative adversarial network for brain tumor segmentation

分割 计算机科学 人工智能 端到端原则 生成语法 自编码 人工神经网络 阶段(地层学) 生成对抗网络 模式识别(心理学) 深度学习 图像分割 机器学习 对抗制 生物 古生物学
作者
Yi Ding,Chao Zhang,Mingsheng Cao,Yilei Wang,Dajiang Chen,Ning Zhang,Zhiguang Qin
出处
期刊:Neurocomputing [Elsevier]
卷期号:462: 141-153 被引量:38
标识
DOI:10.1016/j.neucom.2021.07.066
摘要

Abstract Brain tumor segmentation using MRI data remains challenging for some reasons. Hence, how to accurately segment the brain tumor is kept as a significant topic in the area of medical image segmentation. To follow the idea of “coarse-to-fine” in practice, this paper proposes an end-to-end two-stage generative adversarial neural network (ToStaGAN) to improve the braintumor is kept as a significant topic in the area of medical image segmentation. To follow the idea of “coarse-to-fine” in practice, this paper proposes an end-to-end two-stage generative adversarial neural network (ToStaGAN) to improve the brain tumor segmentation performance by making full use of semantic information in high-level.In the proposed ToStaGAN, the UNET network is adopted as the “coarse” generation network in the first stage, while a U-Shaped contextual autoencoder (ConEnDer), which consists of the proposed fine-grained extraction module (FEM) and dense skip connection, is proposed as the “fine” generation network in the second stage. To be more specific, the FEM is mainly used to effectively extract “fine-grained” features that plays a crucial role in semantic segmentation with only increasing a few parameters. Furthermore, it has the ability to obtain more diverse and abstract features. And by further utilizing the features extracted from the FEM and the coarse prediction map from the first stage, the ConEnDer holds the great potential to generate the optimized segmentation results. We then evaluate the performance of ToStaGAN on the BARATS 2015. Findings from the evaluations suggest that the proposed two-stage generation network achieves a better performance than the one-stage network; thus, also implying the effectiveness of the proposed ConEnder for “fine” segmentation. A comparative summary also shows that the ToStaGAN achieves a better segmentation performance in comparison to other competing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煎饼果子不加葱完成签到,获得积分10
刚刚
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
竹筏过海应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
xzn1123应助下文献采纳,获得10
2秒前
司空豁发布了新的文献求助10
3秒前
共享精神应助西伯侯采纳,获得10
5秒前
流星发布了新的文献求助10
6秒前
共享精神应助zoey采纳,获得10
6秒前
大模型应助里透采纳,获得10
7秒前
helinahs发布了新的文献求助10
7秒前
10秒前
zsyf完成签到,获得积分10
11秒前
wu完成签到,获得积分10
12秒前
领导范儿应助wangjiale采纳,获得10
12秒前
13秒前
xzn1123应助下文献采纳,获得10
15秒前
16秒前
17秒前
wangwangwang发布了新的文献求助10
17秒前
18秒前
桐桐应助Li采纳,获得10
20秒前
心如止水发布了新的文献求助10
20秒前
ZYX发布了新的文献求助10
20秒前
田様应助珂伟采纳,获得10
20秒前
许nana完成签到 ,获得积分10
21秒前
22秒前
刘彤完成签到,获得积分10
22秒前
22秒前
22秒前
Hello应助小张z采纳,获得10
22秒前
小飞完成签到,获得积分10
23秒前
wangjiale发布了新的文献求助10
26秒前
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329329
求助须知:如何正确求助?哪些是违规求助? 2959023
关于积分的说明 8593998
捐赠科研通 2637470
什么是DOI,文献DOI怎么找? 1443549
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656146