Evaluating Deterioration of Tunnels Using Computational Machine Learning Algorithms

支持向量机 机器学习 超参数 人工神经网络 随机森林 计算机科学 决策树 人工智能 预测建模 集合(抽象数据类型) 决策支持系统 数据挖掘 工程类 程序设计语言
作者
Muaz O. Ahmed,Ramy Khalef,Gasser G. Ali,Islam H. El-adaway
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (10) 被引量:21
标识
DOI:10.1061/(asce)co.1943-7862.0002162
摘要

Tunnels are an integrated part of the transportation infrastructure. Structural evaluation and inspection of tunnels are vital tasks to assess the deterioration of tunnels and maintain their level of service. Researchers have developed many predictive models that describe the deterioration of various infrastructure systems using data from formal inspections. However, there is a lack of research that developed predictive models of deterioration of tunnels in the US. Therefore, this paper investigated the feasibility of using various machine learning techniques to develop a computational data-driven decision support tool that predicts the deterioration of tunnels in the US. An ex ante framework for predicting the deterioration of tunnels in the US was developed. The research methodology comprised (1) collecting, cleaning, and standardizing data for tunnels in the US from the Federal Highway Administration (FHWA); (2) identifying the best subset of variables that allow predicting the deterioration of tunnels; (3) utilizing existing machine learning algorithms, namely k-nearest neighbors (KNN), random forest (RF), artificial neural networks (ANNs), and support vector machine (SVM), to develop classification models that predict the deterioration of tunnels; (4) optimizing the accuracy of the developed models by determining the best set of hyperparameters that result in the most accurate performance; (5) comparing the performance of the developed models and selecting the best performing model to be used as a decision support tool; and (6) evaluating and validating the performance of the selected model. The results identified 18 variables that greatly affect the deterioration of tunnels, with the tunnel width having the greatest impact on the prediction of deterioration of tunnels. Results indicated that the RF algorithm reached an accuracy of 85.38%, which was the highest accuracy, compared with KNN, ANN, and SVM, which reached an accuracy of 80.12%, 56.14%, and 56.73%, respectively. In addition, the entropy criterion function with a maximum of five features and 500 estimators successfully constructed the best hyperparameters for the selected RF model. Therefore, the developed decision support tool can be used by transportation entities to estimate the overall condition of tunnels based on specific tunnel parameters with reasonable prediction accuracy. It also can aid decision makers in developing, optimizing, and prioritizing maintenance plans and allocation of funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
2秒前
Theprisoners应助科研通管家采纳,获得20
2秒前
ED应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
powell应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
木木应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
powell应助科研通管家采纳,获得10
4秒前
yps完成签到 ,获得积分10
6秒前
6秒前
只要平凡发布了新的文献求助10
6秒前
华仔应助专注的语堂采纳,获得10
7秒前
gy关闭了gy文献求助
8秒前
慕青应助XM采纳,获得10
8秒前
成就觅翠发布了新的文献求助10
10秒前
10秒前
高山七石完成签到,获得积分10
10秒前
11秒前
小秦秦完成签到 ,获得积分10
12秒前
dophin完成签到,获得积分10
13秒前
沉默书蕾发布了新的文献求助10
14秒前
17秒前
彭于晏应助dophin采纳,获得10
17秒前
谭玲慧发布了新的文献求助10
21秒前
称心妙菱完成签到,获得积分10
22秒前
25秒前
一颗烂番茄完成签到 ,获得积分10
25秒前
稗子酿的酒完成签到 ,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993903
求助须知:如何正确求助?哪些是违规求助? 3534470
关于积分的说明 11265717
捐赠科研通 3274344
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883170
科研通“疑难数据库(出版商)”最低求助积分说明 809712