亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating Deterioration of Tunnels Using Computational Machine Learning Algorithms

支持向量机 机器学习 超参数 人工神经网络 随机森林 计算机科学 决策树 人工智能 预测建模 集合(抽象数据类型) 决策支持系统 数据挖掘 工程类 程序设计语言
作者
Muaz O. Ahmed,Ramy Khalef,Gasser G. Ali,Islam H. El-adaway
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (10) 被引量:21
标识
DOI:10.1061/(asce)co.1943-7862.0002162
摘要

Tunnels are an integrated part of the transportation infrastructure. Structural evaluation and inspection of tunnels are vital tasks to assess the deterioration of tunnels and maintain their level of service. Researchers have developed many predictive models that describe the deterioration of various infrastructure systems using data from formal inspections. However, there is a lack of research that developed predictive models of deterioration of tunnels in the US. Therefore, this paper investigated the feasibility of using various machine learning techniques to develop a computational data-driven decision support tool that predicts the deterioration of tunnels in the US. An ex ante framework for predicting the deterioration of tunnels in the US was developed. The research methodology comprised (1) collecting, cleaning, and standardizing data for tunnels in the US from the Federal Highway Administration (FHWA); (2) identifying the best subset of variables that allow predicting the deterioration of tunnels; (3) utilizing existing machine learning algorithms, namely k-nearest neighbors (KNN), random forest (RF), artificial neural networks (ANNs), and support vector machine (SVM), to develop classification models that predict the deterioration of tunnels; (4) optimizing the accuracy of the developed models by determining the best set of hyperparameters that result in the most accurate performance; (5) comparing the performance of the developed models and selecting the best performing model to be used as a decision support tool; and (6) evaluating and validating the performance of the selected model. The results identified 18 variables that greatly affect the deterioration of tunnels, with the tunnel width having the greatest impact on the prediction of deterioration of tunnels. Results indicated that the RF algorithm reached an accuracy of 85.38%, which was the highest accuracy, compared with KNN, ANN, and SVM, which reached an accuracy of 80.12%, 56.14%, and 56.73%, respectively. In addition, the entropy criterion function with a maximum of five features and 500 estimators successfully constructed the best hyperparameters for the selected RF model. Therefore, the developed decision support tool can be used by transportation entities to estimate the overall condition of tunnels based on specific tunnel parameters with reasonable prediction accuracy. It also can aid decision makers in developing, optimizing, and prioritizing maintenance plans and allocation of funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
18秒前
41秒前
LLL完成签到,获得积分10
50秒前
jyy完成签到,获得积分10
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
wanci应助火星上的柚子采纳,获得10
1分钟前
YOUZI完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
火星上的柚子完成签到,获得积分20
2分钟前
啦啦啦完成签到 ,获得积分10
2分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
Noob_saibot完成签到,获得积分10
4分钟前
Noob_saibot发布了新的文献求助10
4分钟前
科研通AI2S应助如意歌曲采纳,获得10
4分钟前
festum完成签到,获得积分10
5分钟前
Hasee完成签到 ,获得积分10
5分钟前
6分钟前
Akim应助慢慢的地理人采纳,获得10
6分钟前
cacaldon发布了新的文献求助50
6分钟前
cacaldon完成签到,获得积分10
7分钟前
dormraider完成签到,获得积分10
7分钟前
Artin发布了新的文献求助200
7分钟前
Artin完成签到,获得积分10
8分钟前
8分钟前
zai完成签到 ,获得积分10
8分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
10分钟前
祖之微笑发布了新的文献求助30
10分钟前
Cassel完成签到,获得积分10
10分钟前
Mlingji发布了新的文献求助20
12分钟前
13分钟前
13分钟前
sailingluwl完成签到,获得积分10
13分钟前
cc发布了新的文献求助10
13分钟前
风中如松完成签到 ,获得积分10
13分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126163
求助须知:如何正确求助?哪些是违规求助? 2776296
关于积分的说明 7729785
捐赠科研通 2431786
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622643
版权声明 600408