Evaluating Deterioration of Tunnels Using Computational Machine Learning Algorithms

支持向量机 机器学习 超参数 人工神经网络 随机森林 计算机科学 决策树 人工智能 预测建模 集合(抽象数据类型) 决策支持系统 数据挖掘 工程类 程序设计语言
作者
Muaz O. Ahmed,Ramy Khalef,Gasser G. Ali,Islam H. El-adaway
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (10) 被引量:21
标识
DOI:10.1061/(asce)co.1943-7862.0002162
摘要

Tunnels are an integrated part of the transportation infrastructure. Structural evaluation and inspection of tunnels are vital tasks to assess the deterioration of tunnels and maintain their level of service. Researchers have developed many predictive models that describe the deterioration of various infrastructure systems using data from formal inspections. However, there is a lack of research that developed predictive models of deterioration of tunnels in the US. Therefore, this paper investigated the feasibility of using various machine learning techniques to develop a computational data-driven decision support tool that predicts the deterioration of tunnels in the US. An ex ante framework for predicting the deterioration of tunnels in the US was developed. The research methodology comprised (1) collecting, cleaning, and standardizing data for tunnels in the US from the Federal Highway Administration (FHWA); (2) identifying the best subset of variables that allow predicting the deterioration of tunnels; (3) utilizing existing machine learning algorithms, namely k-nearest neighbors (KNN), random forest (RF), artificial neural networks (ANNs), and support vector machine (SVM), to develop classification models that predict the deterioration of tunnels; (4) optimizing the accuracy of the developed models by determining the best set of hyperparameters that result in the most accurate performance; (5) comparing the performance of the developed models and selecting the best performing model to be used as a decision support tool; and (6) evaluating and validating the performance of the selected model. The results identified 18 variables that greatly affect the deterioration of tunnels, with the tunnel width having the greatest impact on the prediction of deterioration of tunnels. Results indicated that the RF algorithm reached an accuracy of 85.38%, which was the highest accuracy, compared with KNN, ANN, and SVM, which reached an accuracy of 80.12%, 56.14%, and 56.73%, respectively. In addition, the entropy criterion function with a maximum of five features and 500 estimators successfully constructed the best hyperparameters for the selected RF model. Therefore, the developed decision support tool can be used by transportation entities to estimate the overall condition of tunnels based on specific tunnel parameters with reasonable prediction accuracy. It also can aid decision makers in developing, optimizing, and prioritizing maintenance plans and allocation of funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uni发布了新的文献求助30
2秒前
夙杨完成签到,获得积分10
2秒前
2秒前
Drew11发布了新的文献求助10
4秒前
静好完成签到,获得积分10
4秒前
帅不屈服发布了新的文献求助10
4秒前
科研通AI5应助快乐的冰巧采纳,获得10
5秒前
5秒前
6秒前
静好发布了新的文献求助10
7秒前
yaya给yaya的求助进行了留言
8秒前
111发布了新的文献求助10
8秒前
科研通AI5应助溪泉采纳,获得10
9秒前
天天快乐应助山月为衾采纳,获得10
9秒前
10秒前
Owen应助uni采纳,获得10
10秒前
10秒前
11秒前
11秒前
善学以致用应助布吉岛采纳,获得30
11秒前
haku发布了新的文献求助10
11秒前
12秒前
13秒前
狄孱发布了新的文献求助10
13秒前
14秒前
帅不屈服完成签到,获得积分10
14秒前
微风发布了新的文献求助20
15秒前
15秒前
15秒前
一支发布了新的文献求助10
16秒前
朴实寻琴发布了新的文献求助10
17秒前
17秒前
17秒前
积极的一德应助xiongyh10采纳,获得20
21秒前
科研通AI5应助million采纳,获得10
21秒前
布吉岛发布了新的文献求助30
21秒前
狄孱完成签到,获得积分10
21秒前
山月为衾发布了新的文献求助10
22秒前
shee完成签到 ,获得积分20
22秒前
吴彦祖发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732986
求助须知:如何正确求助?哪些是违规求助? 3277163
关于积分的说明 10000840
捐赠科研通 2992868
什么是DOI,文献DOI怎么找? 1642471
邀请新用户注册赠送积分活动 780435
科研通“疑难数据库(出版商)”最低求助积分说明 748816