聚电解质
自愈水凝胶
材料科学
离子液体
极限抗拉强度
聚合物
化学工程
离子键合
纳米技术
复合材料
离子
化学
高分子化学
催化作用
有机化学
工程类
作者
Yonghui Zhou,Fei Xu,Jing Tian,Longquan Xu,Yao Li
标识
DOI:10.1016/j.jcis.2021.07.158
摘要
Strain-sensitive and conductive hydrogels have attracted extensive research interest due to their potential applications in various fields, such as healthcare monitoring, human-machine interfaces and soft robots. However, low electrical signal transmission and poor tensile properties still limit the application of flexible sensing hydrogels in large amplitude and high frequency motion. In this study, a novel ionic liquid segmental polyelectrolyte hydrogel consisting of acrylic acid (AAc), 1-vinyl-3-butylimidazolium bromide (VBIMBr) and aluminum ion (Al3+) was prepared by molecular design and polymer synthesis. The cationic groups and amphiphilicity of ionic liquid chain segments effectively improve the tensile behavior of the polyelectrolyte hydrogel, with a maximum tensile strength of 0.16 MPa and a maximum breaking strain of 604%. The introduction of ionic liquid segments increased the current carrying concentration of polyelectrolyte hydrogel, and the conductivity reached the initial 4.8 times (12.5 S/m), which is a necessary condition for detecting various amplitude and high frequency limb movements. The flexible electronic sensor prepared by this polyelectrolyte hydrogel efficiently detects the movement of different parts of the human body stably and sensitively, even in extreme environment (-20 °C). These outstanding advantages demonstrate the great potential of this hydrogel in healthcare monitoring and wearable flexible strain sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI