再生(生物学)
生物
脊髓
再生过程
祖细胞
转录因子
细胞生物学
神经干细胞
爪蟾
神经科学
脊髓损伤
斑马鱼
干细胞
解剖
遗传学
基因
作者
Diane Pelzer,Lauren S. Phipps,Raphael Thuret,Carlos J Gallardo-Dodd,Syed Baker,Karel Dorey
标识
DOI:10.15252/embr.202050932
摘要
Xenopus tadpoles have the ability to regenerate their tails upon amputation. Although some of the molecular and cellular mechanisms that globally regulate tail regeneration have been characterised, tissue-specific response to injury remains poorly understood. Using a combination of bulk and single-cell RNA sequencing on isolated spinal cords before and after amputation, we identify a number of genes specifically expressed in the spinal cord during regeneration. We show that Foxm1, a transcription factor known to promote proliferation, is essential for spinal cord regeneration. Surprisingly, Foxm1 does not control the cell cycle length of neural progenitors but regulates their fate after division. In foxm1-/- tadpoles, we observe a reduction in the number of neurons in the regenerating spinal cord, suggesting that neuronal differentiation is necessary for the regenerative process. Altogether, our data uncover a spinal cord-specific response to injury and reveal a new role for neuronal differentiation during regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI