已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model

计算机科学 人工智能 机器学习 融合 药物靶点 深度学习 集成学习 语言学 医学 药理学 哲学
作者
Yuqian Pu,Jiawei Li,Jijun Tang,Fei Guo
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2760-2769 被引量:30
标识
DOI:10.1109/tcbb.2021.3103966
摘要

Identification of drug-target interaction (DTI) is the most important issue in the broad field of drug discovery. Using purely biological experiments to verify drug-target binding profiles takes lots of time and effort, so computational technologies for this task obviously have great benefits in reducing the drug search space. Most of computational methods to predict DTI are proposed to solve a binary classification problem, which ignore the influence of binding strength. Therefore, drug-target binding affinity prediction is still a challenging issue. Currently, lots of studies only extract sequence information that lacks feature-rich representation, but we consider more spatial features in order to merge various data in drug and target spaces. In this study, we propose a two-stage deep neural network ensemble model for detecting drug-target binding affinity, called DeepFusionDTA, via various information analysis modules. First stage is to utilize sequence and structure information to generate fusion feature map of candidate protein and drug pair through various analysis modules based deep learning. Second stage is to apply bagging-based ensemble learning strategy for regression prediction, and we obtain outstanding results by combining the advantages of various algorithms in efficient feature abstraction and regression calculation. Importantly, we evaluate our novel method, DeepFusionDTA, which delivers 1.5 percent CI increase on KIBA dataset and 1.0 percent increase on Davis dataset, by comparing with existing prediction tools, DeepDTA. Furthermore, the ideas we have offered can be applied to in-silico screening of the interaction space, to provide novel DTIs which can be experimentally pursued. The codes and data are available from https://github.com/guofei-tju/DeepFusionDTA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wang完成签到 ,获得积分10
1秒前
gc完成签到 ,获得积分10
4秒前
4秒前
6秒前
Kvolu29完成签到,获得积分10
6秒前
Lucas应助神勇麦片采纳,获得10
10秒前
12秒前
14秒前
李健的小迷弟应助WanMoledy采纳,获得10
14秒前
16秒前
20秒前
Zz完成签到 ,获得积分10
22秒前
23秒前
帅气绮露发布了新的文献求助10
24秒前
26秒前
funnyzpc完成签到,获得积分10
27秒前
神勇麦片发布了新的文献求助10
29秒前
快乐咸鱼完成签到 ,获得积分10
30秒前
foxmail.com完成签到,获得积分10
31秒前
qqq完成签到 ,获得积分10
32秒前
帅气绮露完成签到,获得积分10
32秒前
34秒前
foxmail.com发布了新的文献求助10
35秒前
39秒前
PXQ发布了新的文献求助10
39秒前
桃桃完成签到 ,获得积分10
49秒前
ding应助周mm采纳,获得10
52秒前
仔仔完成签到 ,获得积分10
52秒前
huangbing123完成签到 ,获得积分10
54秒前
爆米花应助sunshine采纳,获得10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
糟糕的夏山完成签到 ,获得积分10
1分钟前
Cheng完成签到 ,获得积分10
1分钟前
WanMoledy发布了新的文献求助10
1分钟前
anpabc发布了新的文献求助30
1分钟前
kirirto发布了新的文献求助10
1分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179792
求助须知:如何正确求助?哪些是违规求助? 2830282
关于积分的说明 7976152
捐赠科研通 2491754
什么是DOI,文献DOI怎么找? 1328884
科研通“疑难数据库(出版商)”最低求助积分说明 635561
版权声明 602927