High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material

尖晶石 超级电容器 材料科学 纳米颗粒 电极 化学工程 电容 分析化学(期刊) 纳米技术 冶金 化学 物理化学 色谱法 工程类
作者
Bhusankar Talluri,M.L. Aparna,N. Sreenivasulu,Subramshu S. Bhattacharya,Tiju Thomas
出处
期刊:Journal of energy storage [Elsevier]
卷期号:42: 103004-103004 被引量:107
标识
DOI:10.1016/j.est.2021.103004
摘要

High entropy spinel oxides (HEO) are a new type of material stabilized by contributions from configurational entropy, and they are expected to show interesting electrochemical energy storage properties. In this study, the first spinel (CrMnFeCoNi)3O4 HEO nanoparticle-based supercapacitor electrode material is synthesized using a reverse co-precipitation approach. The X-ray diffraction analysis confirmed the phase-pure spinel structure. The X-ray photoelectron spectroscopy is used to identify the oxidation states of the cations in spinel HEO. Scanning electron microscopy and electron dispersive X-ray spectroscopy revealed smooth spherical morphology with uniform distribution of cations in HEO nanoparticles. Electrochemical energy storage properties were further studied on spinel HEO-based supercapacitor electrode material. The HEO electrode showed capacitance of 239 F g−1 and specific energy of 24.1 Wh kg−1 at a current density of 0.5 A g−1. A rate capability of 38% is observed from 0.5 to 25 A g−1. Capacitance retention is found to be 76% after 1000 cycles. The columbic efficiency is remained 86% for 1000 cycles which indicates that HEO has good charge-discharge reversibility. The solution resistance (Rs) and a charge transfer (Rct) of HEO electrodes are found to be 0.96 Ω and 1.56 Ω, respectively. This is the first report on the deployment of pristine spinel-type HEO nanoparticles in supercapacitors, and it opens up possibilities for further exploration of other HEOs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大菠萝发布了新的文献求助10
刚刚
HEIKU应助帅酷的小刺猬采纳,获得10
1秒前
深情的嘉熙完成签到,获得积分10
1秒前
顺利涵菡完成签到,获得积分20
1秒前
斯文败类应助Jack采纳,获得10
1秒前
1秒前
狂野觅云发布了新的文献求助10
2秒前
wanci应助yyy采纳,获得10
2秒前
Abao发布了新的文献求助10
3秒前
无花果应助jagger采纳,获得10
3秒前
旺大财发布了新的文献求助10
3秒前
tanbao完成签到,获得积分10
4秒前
共享精神应助MHB采纳,获得50
4秒前
美丽小蕾发布了新的文献求助10
4秒前
anan发布了新的文献求助10
4秒前
goodgoodstudy发布了新的文献求助10
4秒前
4秒前
huifang完成签到,获得积分10
4秒前
yan儿完成签到,获得积分10
5秒前
6秒前
Dipsy完成签到,获得积分10
6秒前
7秒前
英姑应助狂野觅云采纳,获得10
7秒前
晶晶妹妹完成签到,获得积分10
8秒前
黑妖完成签到,获得积分10
8秒前
8秒前
糊糊完成签到,获得积分10
8秒前
温婉的荷花完成签到,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
10秒前
俭朴的明轩完成签到,获得积分20
10秒前
张童鞋完成签到 ,获得积分10
10秒前
10秒前
10秒前
Autoimmune发布了新的文献求助10
10秒前
帅气惜霜发布了新的文献求助10
11秒前
苏照杭应助Ll采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762