磷烯
声子
调制(音乐)
光电子学
载流子
凝聚态物理
半导体
材料科学
直接和间接带隙
带隙
激发
物理
电子迁移率
量子力学
声学
作者
Hongli Guo,Weibin Chu,Oleg V. Prezhdo,Qijing Zheng,Jin Zhao
标识
DOI:10.1021/acs.jpclett.1c00747
摘要
Black phosphorene (BP) has been attracting intense attention due to its high charge mobility and potential applications in electronic, optical and optoelectronic devices. We demonstrate by ab initio molecular dynamics and nonadiabatic quantum dynamics simulations that the excitation of out-of-plane acoustic phonon (ZA) provides strong modulation of the band gap, carrier lifetime and carrier mobility in BP. A 1% tensile strain can significantly enhance ZA mode excitation at room temperature, distinctly reducing the band gap, carrier mobility, and lifetime. These electronic properties can be tuned easily by influencing the excitation amplitude of the ZA mode. Unique to the family of two-dimensional materials, the ZA mode plays an essential role in controlling the electronic properties of BP. The results of our study provide valuable guidelines for design of functional nanodevices based on 2D BP.
科研通智能强力驱动
Strongly Powered by AbleSci AI