亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption

异质结 微波食品加热 材料科学 宽带 光电子学 电介质 反射损耗 纳米技术 极化(电化学) 消散 半导体 吸收(声学) 光学 化学 复合材料 电信 复合数 物理 物理化学 热力学 计算机科学
作者
Xiaofeng Shi,Zhengwang Liu,Xiao Li,Wenbin You,Zhengzhong Shao,Renchao Che
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:419: 130020-130020 被引量:104
标识
DOI:10.1016/j.cej.2021.130020
摘要

Core-shell structure has been attracting considerable interest to enhance microwave absorption due to its distinct designable interface. To broaden absorption bandwidth, it is necessary to integrate semiconductor with magnetic material. However, it still remains a huge challenge to construct such core–shell heterostructure. Herein, a novel core–shell Fe3O4@black TiO2-x (Fe3O4@b-TiO2-x) heterostructure was successfully fabricated via a surface treatment strategy in vacuum. The unique multi-interfacial structure was constructed by a disordered TiO2-x layer tightly wrapping Fe3O4@TiO2 nanostructure, which exhibited a broadband microwave absorption. Typically, the effective absorption bandwidth (RL <−10 dB) of Fe3O4@b-TiO2-x heterostructure spanned as wide as 13.0 GHz, while the maximum reflection loss can reach up to −47.6 dB. The enhanced microwave attenuation capability can be attributed to the introduction of outer disordered TiO2-x thin layer. The multiple interfaces constructed by Fe3O4-TiO2 and TiO2-TiO2-x, as well as defect dipoles encapsulated within black TiO2-x layer, contributed to the boosted polarization dissipation. Moreover, the well-designed TiO2-TiO2-x shell is beneficial to the penetration of the magnetic field line radiated out from Fe3O4 core, which endowed the Fe3O4@b-TiO2-x with superior magnetic-dielectric synergetic dissipation effect. The novel finding might pave a way to design broadband microwave absorber based on core–shell functional structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助zyj采纳,获得10
13秒前
我是老大应助江锦雯采纳,获得10
16秒前
佳宝(不可以喝但能吃完成签到,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
24秒前
26秒前
江锦雯发布了新的文献求助10
28秒前
Sci完成签到,获得积分10
29秒前
44秒前
贺俊龙发布了新的文献求助10
49秒前
Owen应助靓丽的魔镜采纳,获得10
53秒前
LUYAO1完成签到 ,获得积分10
54秒前
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
Tiamo发布了新的文献求助10
1分钟前
飞翔的荷兰人完成签到,获得积分10
1分钟前
papi完成签到 ,获得积分10
1分钟前
1分钟前
852应助江锦雯采纳,获得10
1分钟前
Ansel_Schneider完成签到,获得积分10
1分钟前
邓明发布了新的文献求助10
1分钟前
tinbenny发布了新的文献求助10
1分钟前
1分钟前
lixuebin完成签到 ,获得积分10
1分钟前
papi发布了新的文献求助10
1分钟前
糊涂的剑完成签到,获得积分20
1分钟前
1分钟前
1分钟前
糊涂的剑发布了新的文献求助10
1分钟前
邓明完成签到,获得积分10
1分钟前
科研捣蛋鬼完成签到,获得积分10
1分钟前
科研通AI2S应助糊涂的剑采纳,获得10
1分钟前
香蕉觅云应助懒洋洋采纳,获得10
1分钟前
江锦雯发布了新的文献求助10
1分钟前
思源应助tinbenny采纳,获得10
1分钟前
ppl关闭了ppl文献求助
1分钟前
香蕉觅云应助papi采纳,获得10
1分钟前
江锦雯完成签到,获得积分10
2分钟前
小刘完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223