Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption

异质结 微波食品加热 材料科学 宽带 光电子学 电介质 反射损耗 纳米技术 极化(电化学) 消散 半导体 吸收(声学) 光学 化学 复合材料 电信 复合数 物理 物理化学 热力学 计算机科学
作者
Xiaofeng Shi,Zhengwang Liu,Xiao Li,Wenbin You,Zhengzhong Shao,Renchao Che
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:419: 130020-130020 被引量:109
标识
DOI:10.1016/j.cej.2021.130020
摘要

Core-shell structure has been attracting considerable interest to enhance microwave absorption due to its distinct designable interface. To broaden absorption bandwidth, it is necessary to integrate semiconductor with magnetic material. However, it still remains a huge challenge to construct such core–shell heterostructure. Herein, a novel core–shell Fe3O4@black TiO2-x (Fe3O4@b-TiO2-x) heterostructure was successfully fabricated via a surface treatment strategy in vacuum. The unique multi-interfacial structure was constructed by a disordered TiO2-x layer tightly wrapping Fe3O4@TiO2 nanostructure, which exhibited a broadband microwave absorption. Typically, the effective absorption bandwidth (RL <−10 dB) of Fe3O4@b-TiO2-x heterostructure spanned as wide as 13.0 GHz, while the maximum reflection loss can reach up to −47.6 dB. The enhanced microwave attenuation capability can be attributed to the introduction of outer disordered TiO2-x thin layer. The multiple interfaces constructed by Fe3O4-TiO2 and TiO2-TiO2-x, as well as defect dipoles encapsulated within black TiO2-x layer, contributed to the boosted polarization dissipation. Moreover, the well-designed TiO2-TiO2-x shell is beneficial to the penetration of the magnetic field line radiated out from Fe3O4 core, which endowed the Fe3O4@b-TiO2-x with superior magnetic-dielectric synergetic dissipation effect. The novel finding might pave a way to design broadband microwave absorber based on core–shell functional structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wahh完成签到,获得积分20
刚刚
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
兜兜发布了新的文献求助10
3秒前
上官若男应助羽言采纳,获得10
3秒前
Lee完成签到,获得积分10
3秒前
lixiaofan完成签到,获得积分10
5秒前
wahh发布了新的文献求助10
6秒前
lixiaofan发布了新的文献求助10
7秒前
7秒前
QQ发布了新的文献求助10
8秒前
8秒前
caspar完成签到,获得积分10
9秒前
9秒前
zdz完成签到,获得积分10
9秒前
我是老大应助薛哲采纳,获得10
9秒前
11秒前
希望天下0贩的0应助Allen采纳,获得10
12秒前
shirleyxxxx发布了新的文献求助10
12秒前
果子酱鸭发布了新的文献求助30
13秒前
在水一方应助坦率雪枫采纳,获得10
13秒前
兜兜完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
李健应助张馨月采纳,获得10
16秒前
陶醉水风发布了新的文献求助10
16秒前
19秒前
慕青应助庾储采纳,获得10
20秒前
羽言发布了新的文献求助10
21秒前
研友_VZG7GZ应助唐唐采纳,获得10
22秒前
虚幻百川应助123采纳,获得10
22秒前
23秒前
科研通AI6应助深蓝采纳,获得20
23秒前
小宇发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642582
求助须知:如何正确求助?哪些是违规求助? 4759250
关于积分的说明 15018176
捐赠科研通 4801148
什么是DOI,文献DOI怎么找? 2566437
邀请新用户注册赠送积分活动 1524505
关于科研通互助平台的介绍 1484039