亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Personalized Federated Learning for User Modeling

计算机科学 用户建模 用户信息 服务器 信息隐私 万维网 用户界面 信息系统 计算机安全 操作系统 电气工程 工程类
作者
Jinze Wu,Qi Liu,Zhenya Huang,Yuting Ning,Hao Wang,Enhong Chen,Jinfeng Yi,Bowen Zhou
标识
DOI:10.1145/3442381.3449926
摘要

User modeling aims to capture the latent characteristics of users from their behaviors, and is widely applied in numerous applications. Usually, centralized user modeling suffers from the risk of privacy leakage. Instead, federated user modeling expects to provide a secure multi-client collaboration for user modeling through federated learning. Existing federated learning methods are mainly designed for consistent clients, which cannot be directly applied to practical scenarios, where different clients usually store inconsistent user data. Therefore, it is a crucial demand to design an appropriate federated solution that can better adapt to user modeling tasks, and however, meets following critical challenges: 1) Statistical heterogeneity. The distributions of user data in different clients are not always independently identically distributed which leads to personalized clients; 2) Privacy heterogeneity. User data contains both public and private information, which have different levels of privacy. It means we should balance different information to be shared and protected; 3) Model heterogeneity. The local user models trained with client records are heterogeneous which need flexible aggregation in the server. In this paper, we propose a novel client-server architecture framework, namely Hierarchical Personalized Federated Learning (HPFL) to serve federated learning in user modeling with inconsistent clients. In the framework, we first define hierarchical information to finely partition the data with privacy heterogeneity. On this basis, the client trains a user model which contains different components designed for hierarchical information. Moreover, client processes a fine-grained personalized update strategy to update personalized user model for statistical heterogeneity. Correspondingly, the server completes a differentiated component aggregation strategy to flexibly aggregate heterogeneous user models in the case of privacy and model heterogeneity. Finally, we conduct extensive experiments on real-world datasets, which demonstrate the effectiveness of the HPFL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenting完成签到 ,获得积分10
20秒前
小付完成签到,获得积分10
28秒前
NexusExplorer应助科研通管家采纳,获得10
55秒前
烟消云散完成签到,获得积分10
58秒前
汉堡包应助梦梦采纳,获得10
1分钟前
1分钟前
Orange应助reerwt采纳,获得10
1分钟前
annis完成签到,获得积分10
1分钟前
1分钟前
含蓄绿竹完成签到 ,获得积分10
1分钟前
2分钟前
reerwt发布了新的文献求助10
2分钟前
Liufgui应助sss采纳,获得10
2分钟前
梦梦完成签到,获得积分10
2分钟前
2分钟前
reerwt完成签到,获得积分20
2分钟前
2分钟前
陈元元K完成签到,获得积分10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
3分钟前
梦梦发布了新的文献求助10
3分钟前
3分钟前
caca完成签到,获得积分0
3分钟前
科研通AI2S应助YYYCCCCC采纳,获得10
3分钟前
海鸥别叫了完成签到 ,获得积分10
4分钟前
云霞完成签到 ,获得积分10
4分钟前
朴素的山蝶完成签到 ,获得积分10
4分钟前
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
Bugs完成签到,获得积分10
5分钟前
5分钟前
小八统治世界完成签到 ,获得积分10
5分钟前
tang完成签到,获得积分10
5分钟前
汉堡包应助舒服的觅夏采纳,获得10
5分钟前
suicone完成签到,获得积分10
5分钟前
zqq完成签到,获得积分0
5分钟前
5分钟前
归陌完成签到 ,获得积分10
5分钟前
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228