已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hierarchical Personalized Federated Learning for User Modeling

计算机科学 用户建模 用户信息 服务器 信息隐私 万维网 用户界面 信息系统 计算机安全 操作系统 电气工程 工程类
作者
Jinze Wu,Qi Liu,Zhenya Huang,Yuting Ning,Hao Wang,Enhong Chen,Jinfeng Yi,Bowen Zhou
标识
DOI:10.1145/3442381.3449926
摘要

User modeling aims to capture the latent characteristics of users from their behaviors, and is widely applied in numerous applications. Usually, centralized user modeling suffers from the risk of privacy leakage. Instead, federated user modeling expects to provide a secure multi-client collaboration for user modeling through federated learning. Existing federated learning methods are mainly designed for consistent clients, which cannot be directly applied to practical scenarios, where different clients usually store inconsistent user data. Therefore, it is a crucial demand to design an appropriate federated solution that can better adapt to user modeling tasks, and however, meets following critical challenges: 1) Statistical heterogeneity. The distributions of user data in different clients are not always independently identically distributed which leads to personalized clients; 2) Privacy heterogeneity. User data contains both public and private information, which have different levels of privacy. It means we should balance different information to be shared and protected; 3) Model heterogeneity. The local user models trained with client records are heterogeneous which need flexible aggregation in the server. In this paper, we propose a novel client-server architecture framework, namely Hierarchical Personalized Federated Learning (HPFL) to serve federated learning in user modeling with inconsistent clients. In the framework, we first define hierarchical information to finely partition the data with privacy heterogeneity. On this basis, the client trains a user model which contains different components designed for hierarchical information. Moreover, client processes a fine-grained personalized update strategy to update personalized user model for statistical heterogeneity. Correspondingly, the server completes a differentiated component aggregation strategy to flexibly aggregate heterogeneous user models in the case of privacy and model heterogeneity. Finally, we conduct extensive experiments on real-world datasets, which demonstrate the effectiveness of the HPFL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助水若琳采纳,获得10
刚刚
fanyueyue完成签到 ,获得积分10
2秒前
4114完成签到,获得积分10
5秒前
ding应助lizigongzhu采纳,获得10
5秒前
6秒前
伊叶之丘完成签到 ,获得积分10
7秒前
SYLH应助WeiMooo采纳,获得10
9秒前
11秒前
12秒前
13秒前
Nefelibata完成签到,获得积分10
13秒前
16秒前
21秒前
Limerencia完成签到,获得积分10
24秒前
李爱国应助zhouleiwang采纳,获得10
29秒前
XL神放完成签到 ,获得积分10
30秒前
稳重向南完成签到,获得积分10
32秒前
范户晓完成签到,获得积分10
37秒前
39秒前
kkkk完成签到,获得积分10
40秒前
冷艳玉米完成签到,获得积分10
41秒前
kkkk发布了新的文献求助10
42秒前
爱卿5271完成签到,获得积分10
44秒前
一直向前发布了新的文献求助10
44秒前
岳小龙完成签到 ,获得积分10
49秒前
49秒前
冰川与星辰完成签到,获得积分10
49秒前
51秒前
开朗万天完成签到 ,获得积分10
52秒前
科研助手6应助冰雪痕采纳,获得10
53秒前
ShenQ发布了新的文献求助10
55秒前
奶糖爱果冻完成签到 ,获得积分10
56秒前
甜甜的紫菜完成签到 ,获得积分10
57秒前
li完成签到 ,获得积分10
1分钟前
shu完成签到,获得积分10
1分钟前
Cathy完成签到,获得积分10
1分钟前
JiayinLiu发布了新的文献求助50
1分钟前
天天快乐应助认真的三问采纳,获得10
1分钟前
狐狸小姐完成签到 ,获得积分10
1分钟前
fane完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216