Hierarchical Personalized Federated Learning for User Modeling

计算机科学 用户建模 用户信息 服务器 信息隐私 万维网 用户界面 信息系统 计算机安全 操作系统 电气工程 工程类
作者
Jinze Wu,Qi Liu,Zhenya Huang,Yuting Ning,Hao Wang,Enhong Chen,Jinfeng Yi,Bowen Zhou
标识
DOI:10.1145/3442381.3449926
摘要

User modeling aims to capture the latent characteristics of users from their behaviors, and is widely applied in numerous applications. Usually, centralized user modeling suffers from the risk of privacy leakage. Instead, federated user modeling expects to provide a secure multi-client collaboration for user modeling through federated learning. Existing federated learning methods are mainly designed for consistent clients, which cannot be directly applied to practical scenarios, where different clients usually store inconsistent user data. Therefore, it is a crucial demand to design an appropriate federated solution that can better adapt to user modeling tasks, and however, meets following critical challenges: 1) Statistical heterogeneity. The distributions of user data in different clients are not always independently identically distributed which leads to personalized clients; 2) Privacy heterogeneity. User data contains both public and private information, which have different levels of privacy. It means we should balance different information to be shared and protected; 3) Model heterogeneity. The local user models trained with client records are heterogeneous which need flexible aggregation in the server. In this paper, we propose a novel client-server architecture framework, namely Hierarchical Personalized Federated Learning (HPFL) to serve federated learning in user modeling with inconsistent clients. In the framework, we first define hierarchical information to finely partition the data with privacy heterogeneity. On this basis, the client trains a user model which contains different components designed for hierarchical information. Moreover, client processes a fine-grained personalized update strategy to update personalized user model for statistical heterogeneity. Correspondingly, the server completes a differentiated component aggregation strategy to flexibly aggregate heterogeneous user models in the case of privacy and model heterogeneity. Finally, we conduct extensive experiments on real-world datasets, which demonstrate the effectiveness of the HPFL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dt发布了新的文献求助10
1秒前
1秒前
MJ发布了新的文献求助10
2秒前
SEVEN完成签到,获得积分10
2秒前
潇洒的小丸子完成签到,获得积分10
2秒前
善学以致用应助阳光万声采纳,获得10
2秒前
3秒前
朱可欣完成签到 ,获得积分10
3秒前
不配.应助zz采纳,获得20
3秒前
3秒前
3秒前
无语的长颈鹿完成签到,获得积分20
3秒前
4秒前
Lr发布了新的文献求助10
4秒前
5秒前
缄默完成签到,获得积分10
6秒前
不懈奋进应助chi采纳,获得30
6秒前
愚公发布了新的文献求助10
6秒前
充电宝应助dt采纳,获得10
7秒前
希望天下0贩的0应助万海采纳,获得10
8秒前
胡77完成签到,获得积分10
8秒前
lan发布了新的文献求助10
9秒前
9秒前
捞鱼发布了新的文献求助10
9秒前
王安琪发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
zyt发布了新的文献求助10
12秒前
zhangmbit发布了新的文献求助100
12秒前
13秒前
ding应助zhz采纳,获得10
13秒前
13秒前
14秒前
14秒前
16秒前
李健应助zeng采纳,获得30
17秒前
17秒前
范啦啦啦发布了新的文献求助30
17秒前
赘婿应助捞鱼采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153624
求助须知:如何正确求助?哪些是违规求助? 2804769
关于积分的说明 7861576
捐赠科研通 2462781
什么是DOI,文献DOI怎么找? 1310981
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809