Hierarchical Personalized Federated Learning for User Modeling

计算机科学 用户建模 用户信息 服务器 信息隐私 万维网 用户界面 信息系统 计算机安全 操作系统 电气工程 工程类
作者
Jinze Wu,Qi Liu,Zhenya Huang,Yuting Ning,Hao Wang,Enhong Chen,Jinfeng Yi,Bowen Zhou
标识
DOI:10.1145/3442381.3449926
摘要

User modeling aims to capture the latent characteristics of users from their behaviors, and is widely applied in numerous applications. Usually, centralized user modeling suffers from the risk of privacy leakage. Instead, federated user modeling expects to provide a secure multi-client collaboration for user modeling through federated learning. Existing federated learning methods are mainly designed for consistent clients, which cannot be directly applied to practical scenarios, where different clients usually store inconsistent user data. Therefore, it is a crucial demand to design an appropriate federated solution that can better adapt to user modeling tasks, and however, meets following critical challenges: 1) Statistical heterogeneity. The distributions of user data in different clients are not always independently identically distributed which leads to personalized clients; 2) Privacy heterogeneity. User data contains both public and private information, which have different levels of privacy. It means we should balance different information to be shared and protected; 3) Model heterogeneity. The local user models trained with client records are heterogeneous which need flexible aggregation in the server. In this paper, we propose a novel client-server architecture framework, namely Hierarchical Personalized Federated Learning (HPFL) to serve federated learning in user modeling with inconsistent clients. In the framework, we first define hierarchical information to finely partition the data with privacy heterogeneity. On this basis, the client trains a user model which contains different components designed for hierarchical information. Moreover, client processes a fine-grained personalized update strategy to update personalized user model for statistical heterogeneity. Correspondingly, the server completes a differentiated component aggregation strategy to flexibly aggregate heterogeneous user models in the case of privacy and model heterogeneity. Finally, we conduct extensive experiments on real-world datasets, which demonstrate the effectiveness of the HPFL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肥猫发布了新的文献求助10
1秒前
1秒前
可爱的函函应助过氧化氢采纳,获得30
4秒前
4秒前
锦鲤完成签到 ,获得积分10
5秒前
任性的白玉完成签到 ,获得积分10
5秒前
youwenjing11发布了新的文献求助10
6秒前
山谷完成签到 ,获得积分10
6秒前
钱宇成发布了新的文献求助10
7秒前
科研通AI2S应助感动黄豆采纳,获得10
11秒前
15秒前
16秒前
19秒前
Fengliguantou发布了新的文献求助10
19秒前
猪猪hero发布了新的文献求助10
21秒前
Winner发布了新的文献求助10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得30
24秒前
24秒前
圆锥香蕉应助科研通管家采纳,获得20
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
25秒前
25秒前
感动黄豆发布了新的文献求助10
25秒前
28秒前
搞怪冷风完成签到,获得积分10
29秒前
lucky完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
32秒前
科目三应助战斗暴龙兽采纳,获得10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105