Hierarchical Personalized Federated Learning for User Modeling

计算机科学 用户建模 用户信息 服务器 信息隐私 万维网 用户界面 信息系统 计算机安全 操作系统 电气工程 工程类
作者
Jinze Wu,Qi Liu,Zhenya Huang,Yuting Ning,Hao Wang,Enhong Chen,Jinfeng Yi,Bowen Zhou
标识
DOI:10.1145/3442381.3449926
摘要

User modeling aims to capture the latent characteristics of users from their behaviors, and is widely applied in numerous applications. Usually, centralized user modeling suffers from the risk of privacy leakage. Instead, federated user modeling expects to provide a secure multi-client collaboration for user modeling through federated learning. Existing federated learning methods are mainly designed for consistent clients, which cannot be directly applied to practical scenarios, where different clients usually store inconsistent user data. Therefore, it is a crucial demand to design an appropriate federated solution that can better adapt to user modeling tasks, and however, meets following critical challenges: 1) Statistical heterogeneity. The distributions of user data in different clients are not always independently identically distributed which leads to personalized clients; 2) Privacy heterogeneity. User data contains both public and private information, which have different levels of privacy. It means we should balance different information to be shared and protected; 3) Model heterogeneity. The local user models trained with client records are heterogeneous which need flexible aggregation in the server. In this paper, we propose a novel client-server architecture framework, namely Hierarchical Personalized Federated Learning (HPFL) to serve federated learning in user modeling with inconsistent clients. In the framework, we first define hierarchical information to finely partition the data with privacy heterogeneity. On this basis, the client trains a user model which contains different components designed for hierarchical information. Moreover, client processes a fine-grained personalized update strategy to update personalized user model for statistical heterogeneity. Correspondingly, the server completes a differentiated component aggregation strategy to flexibly aggregate heterogeneous user models in the case of privacy and model heterogeneity. Finally, we conduct extensive experiments on real-world datasets, which demonstrate the effectiveness of the HPFL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
oblivious完成签到,获得积分10
2秒前
mkb完成签到,获得积分10
2秒前
2秒前
向秋发布了新的文献求助10
3秒前
王云骢完成签到,获得积分20
4秒前
甜蜜鹭洋完成签到 ,获得积分10
4秒前
xuxuxuuxuxux完成签到,获得积分10
4秒前
5秒前
月光族完成签到,获得积分10
5秒前
树下发布了新的文献求助10
5秒前
滴滴完成签到,获得积分20
7秒前
8秒前
七安发布了新的文献求助30
8秒前
LeePsy完成签到,获得积分10
8秒前
9秒前
深情安青应助hbutsj采纳,获得10
9秒前
小璐璐呀完成签到,获得积分10
10秒前
明亮安双完成签到,获得积分20
11秒前
Lemon完成签到,获得积分10
11秒前
sci一区作者完成签到,获得积分20
12秒前
包容柜子发布了新的文献求助10
12秒前
hhllhh发布了新的文献求助10
13秒前
河丫应助阳洋洋采纳,获得10
13秒前
13秒前
落霞与孤鹜齐飞完成签到,获得积分10
14秒前
14秒前
14秒前
hbuhfl完成签到,获得积分10
15秒前
小瑜完成签到,获得积分10
16秒前
小蘑菇应助Lemon采纳,获得10
16秒前
betty2009完成签到,获得积分10
16秒前
星星完成签到,获得积分10
16秒前
乐观如松关注了科研通微信公众号
16秒前
17秒前
Leo发布了新的文献求助20
18秒前
18秒前
幸运星完成签到,获得积分10
18秒前
包容柜子完成签到,获得积分10
19秒前
马某发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029