Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction

塔菲尔方程 过电位 电催化剂 材料科学 析氧 电子转移 催化作用 活动中心 纳米技术 分解水 密度泛函理论 化学工程 化学 无机化学 电极 光化学 物理化学 电化学 计算化学 有机化学 工程类 光催化
作者
Qun Li,Xianfu Wang,Kai Tang,Mengfan Wang,Chao Wang,Chenglin Yan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (12): 12230-12239 被引量:154
标识
DOI:10.1021/acsnano.7b05606
摘要

Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu7S4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu7S4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu7S4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm–2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu7S4. This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达金鱼发布了新的文献求助10
刚刚
Ing发布了新的文献求助10
1秒前
1秒前
所所应助落寞之云采纳,获得10
2秒前
2秒前
BU会完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
兔年吉祥完成签到,获得积分20
4秒前
4秒前
充电宝应助高序采纳,获得10
4秒前
Akim应助勤劳代亦采纳,获得10
4秒前
丁仪完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助大力的水风采纳,获得10
6秒前
6秒前
6秒前
中宝发布了新的文献求助10
6秒前
6秒前
Ava应助Ing采纳,获得10
6秒前
6秒前
7秒前
樱悼柳雪发布了新的文献求助10
7秒前
8秒前
stefan发布了新的文献求助10
8秒前
大傻春发布了新的文献求助10
8秒前
852应助亮亮采纳,获得10
8秒前
9秒前
9秒前
fff发布了新的文献求助10
9秒前
庞鲂发布了新的文献求助30
9秒前
勤劳的老九应助兔年吉祥采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
sofar完成签到 ,获得积分10
10秒前
10秒前
11秒前
小马甲应助sup采纳,获得10
11秒前
yyyyyyy111发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202