清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DOTA: A Large-scale Dataset for Object Detection in Aerial Images

人工智能 目标检测 计算机视觉 对象(语法) 计算机科学 航空影像 方向(向量空间) 比例(比率) 像素 遥感 图像(数学) 计算机图形学(图像) 模式识别(心理学) 地理 地图学 数学 几何学
作者
Gui-Song Xia,Xiang Bai,Jian Ding,Zhen Zhu,Serge Belongie,Jiebo Luo,Mihai Datcu,Marcello Pelillo,Liangpei Zhang
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.1711.10398
摘要

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚子完成签到 ,获得积分10
7秒前
51秒前
53秒前
jiejie完成签到,获得积分10
1分钟前
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
耍酷平凡完成签到,获得积分10
2分钟前
荔枝发布了新的文献求助10
2分钟前
2分钟前
连安阳完成签到,获得积分10
2分钟前
3分钟前
荔枝发布了新的文献求助10
3分钟前
丁老三完成签到 ,获得积分10
4分钟前
4分钟前
Jim发布了新的文献求助10
5分钟前
5分钟前
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
5分钟前
Unlisted发布了新的文献求助10
5分钟前
落寞的又菡完成签到,获得积分10
5分钟前
6分钟前
端庄洪纲完成签到 ,获得积分10
6分钟前
6分钟前
米修发布了新的文献求助10
7分钟前
7分钟前
米修完成签到,获得积分20
7分钟前
CodeCraft应助居家小可采纳,获得10
7分钟前
7分钟前
苗苗发布了新的文献求助10
7分钟前
8分钟前
苗苗完成签到 ,获得积分10
8分钟前
loathebm发布了新的文献求助10
8分钟前
NexusExplorer应助loathebm采纳,获得10
8分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
8分钟前
9分钟前
居家小可发布了新的文献求助10
9分钟前
我睡觉的时候不困完成签到 ,获得积分10
9分钟前
居家小可完成签到,获得积分10
9分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108