DOTA: A Large-scale Dataset for Object Detection in Aerial Images

人工智能 目标检测 计算机视觉 对象(语法) 计算机科学 航空影像 方向(向量空间) 比例(比率) 像素 遥感 图像(数学) 模式识别(心理学) 地理 地图学 数学 几何学
作者
Gui-Song Xia,Xiang Bai,Jian Ding,Zhen Zhu,Serge Belongie,Jiebo Luo,Mihai Datcu,Marcello Pelillo,Liangpei Zhang
出处
期刊:Cornell University - arXiv 被引量:137
标识
DOI:10.48550/arxiv.1711.10398
摘要

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静子发布了新的文献求助10
刚刚
刚刚
跳跃巨人完成签到,获得积分10
1秒前
1秒前
危机的雪旋完成签到,获得积分10
2秒前
Owen应助TingtingGZ采纳,获得10
2秒前
2秒前
3秒前
滕滕应助彭凯采纳,获得10
3秒前
3秒前
滕滕应助彭凯采纳,获得10
3秒前
冷彬发布了新的文献求助10
4秒前
任寒松发布了新的文献求助10
4秒前
4秒前
5秒前
正正应助czx采纳,获得10
5秒前
lieeey应助陈秀娟采纳,获得10
5秒前
SciGPT应助小b亮采纳,获得10
5秒前
钱钱发布了新的文献求助10
5秒前
6秒前
Orange应助Lawfy采纳,获得10
6秒前
6秒前
snail01完成签到,获得积分10
6秒前
liuzr发布了新的文献求助10
7秒前
7秒前
Jasper应助不安的彤采纳,获得10
8秒前
9秒前
White_Night发布了新的文献求助10
9秒前
乐乐应助笠原May采纳,获得30
10秒前
Lynth_雪鸮发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
情怀应助任寒松采纳,获得10
11秒前
12秒前
静子完成签到,获得积分10
12秒前
常芹完成签到,获得积分10
12秒前
DyG发布了新的文献求助10
13秒前
Ava应助研友_xnEOX8采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620793
求助须知:如何正确求助?哪些是违规求助? 4705330
关于积分的说明 14931678
捐赠科研通 4763128
什么是DOI,文献DOI怎么找? 2551196
邀请新用户注册赠送积分活动 1513780
关于科研通互助平台的介绍 1474661