DOTA: A Large-scale Dataset for Object Detection in Aerial Images

人工智能 目标检测 计算机视觉 对象(语法) 计算机科学 航空影像 方向(向量空间) 比例(比率) 像素 遥感 图像(数学) 模式识别(心理学) 地理 地图学 数学 几何学
作者
Gui-Song Xia,Xiang Bai,Jian Ding,Zhen Zhu,Serge Belongie,Jiebo Luo,Mihai Datcu,Marcello Pelillo,Liangpei Zhang
出处
期刊:Cornell University - arXiv 被引量:137
标识
DOI:10.48550/arxiv.1711.10398
摘要

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄荷糖完成签到,获得积分10
2秒前
蜂蜜完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
abz完成签到 ,获得积分10
3秒前
852应助悦来悦好采纳,获得10
4秒前
4秒前
5秒前
k96完成签到,获得积分10
5秒前
123td完成签到,获得积分10
5秒前
NANA发布了新的文献求助30
5秒前
斯文败类应助自信绿蝶采纳,获得10
5秒前
我是老大应助药神L采纳,获得10
5秒前
gz发布了新的文献求助10
6秒前
6秒前
龙06发布了新的文献求助30
7秒前
8秒前
路过完成签到,获得积分10
8秒前
次我完成签到,获得积分10
8秒前
禹霏霏完成签到,获得积分10
9秒前
Costing发布了新的文献求助10
9秒前
7777完成签到,获得积分20
9秒前
yueyue3SCI发布了新的文献求助10
9秒前
Owen应助PCEEN采纳,获得10
11秒前
丘比特应助蔷薇之花采纳,获得10
12秒前
12秒前
123td发布了新的文献求助10
12秒前
Sevi完成签到,获得积分10
14秒前
鱼梓完成签到,获得积分10
14秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
青阳发布了新的文献求助10
14秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
15秒前
LLLLLLLL应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580550
求助须知:如何正确求助?哪些是违规求助? 4665376
关于积分的说明 14755842
捐赠科研通 4606862
什么是DOI,文献DOI怎么找? 2528078
邀请新用户注册赠送积分活动 1497365
关于科研通互助平台的介绍 1466331