DOTA: A Large-scale Dataset for Object Detection in Aerial Images

人工智能 目标检测 计算机视觉 对象(语法) 计算机科学 航空影像 方向(向量空间) 比例(比率) 像素 遥感 图像(数学) 模式识别(心理学) 地理 地图学 数学 几何学
作者
Gui-Song Xia,Xiang Bai,Jian Ding,Zhen Zhu,Serge Belongie,Jiebo Luo,Mihai Datcu,Marcello Pelillo,Liangpei Zhang
出处
期刊:Cornell University - arXiv 被引量:137
标识
DOI:10.48550/arxiv.1711.10398
摘要

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虚心的百川完成签到,获得积分20
1秒前
吴开珍发布了新的文献求助10
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Zx_1993应助科研通管家采纳,获得10
2秒前
深情安青应助四海采纳,获得10
2秒前
田様应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助111采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
王帅发布了新的文献求助200
3秒前
beta发布了新的文献求助10
3秒前
3秒前
自信问枫发布了新的文献求助10
3秒前
haixia完成签到,获得积分10
3秒前
3秒前
3秒前
顾矜应助noair采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593517
求助须知:如何正确求助?哪些是违规求助? 4679389
关于积分的说明 14809850
捐赠科研通 4644255
什么是DOI,文献DOI怎么找? 2534483
邀请新用户注册赠送积分活动 1502597
关于科研通互助平台的介绍 1469366