Classification of Hyperspectral Images by Gabor Filtering Based Deep Network

人工智能 高光谱成像 自编码 模式识别(心理学) 计算机科学 深度学习 主成分分析 Gabor滤波器 计算机视觉 特征提取
作者
Xudong Kang,Chengchao Li,Shutao Li,Hui Lin
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 1166-1178 被引量:142
标识
DOI:10.1109/jstars.2017.2767185
摘要

In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-level spatial structures of different orientations and scales. Then, the Gabor features and spectral features are simply stacked to form the fused features. Afterwards, deep features are captured by training a stacked sparse autoencoder deep network with the fused features obtained above as inputs. Since the number of training samples of hyperspectral images is often very limited, which negatively affects the classification performance in deep learning, an effective way of constructing virtual samples is designed to generate more training samples, automatically. By jointly utilizing both the real and virtual samples, the parameters of the deep network can be better trained and updated, which can result in classification results of higher accuracies. Experiments performed on four real hyperspectral datasets show that the proposed method outperforms several recently proposed classification methods in terms of classification accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮咚铛发布了新的文献求助10
1秒前
深情安青应助fairy采纳,获得10
1秒前
Akim应助q792309106采纳,获得10
1秒前
bkagyin应助哈哈哈采纳,获得10
2秒前
2秒前
2秒前
wjj119完成签到,获得积分10
3秒前
搜集达人应助jianjian采纳,获得30
3秒前
八森木发布了新的文献求助10
3秒前
3秒前
3秒前
ss发布了新的文献求助10
4秒前
烂漫青槐应助han采纳,获得20
4秒前
Owen应助柔弱的芷荷采纳,获得10
4秒前
realyxy发布了新的文献求助50
4秒前
共享精神应助DianaRang采纳,获得10
5秒前
6秒前
cc关注了科研通微信公众号
6秒前
7秒前
清风朗月完成签到,获得积分10
7秒前
7秒前
虚幻羊完成签到,获得积分10
7秒前
7秒前
8秒前
FQQ发布了新的文献求助10
9秒前
大模型应助剑舞人间采纳,获得30
9秒前
11秒前
Owen应助奋斗蜗牛采纳,获得10
12秒前
滴滴答发布了新的文献求助10
12秒前
12秒前
Andy1201应助178181采纳,获得10
13秒前
zk完成签到,获得积分10
15秒前
星辰大海应助hhj采纳,获得10
15秒前
酷波er应助金熙美采纳,获得10
15秒前
16秒前
16秒前
NexusExplorer应助楼轶采纳,获得10
17秒前
17秒前
单单来迟完成签到,获得积分10
17秒前
小二郎应助jzmulyl采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126