Classification of Hyperspectral Images by Gabor Filtering Based Deep Network

人工智能 高光谱成像 自编码 模式识别(心理学) 计算机科学 深度学习 主成分分析 Gabor滤波器 计算机视觉 特征提取
作者
Xudong Kang,Chengchao Li,Shutao Li,Hui Lin
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 1166-1178 被引量:142
标识
DOI:10.1109/jstars.2017.2767185
摘要

In this paper, a novel spectral-spatial classification method based on Gabor filtering and deep network (GFDN) is proposed. First, Gabor features are extracted by performing Gabor filtering on the first three principal components of the hyperspectral image, which can typically characterize the low-level spatial structures of different orientations and scales. Then, the Gabor features and spectral features are simply stacked to form the fused features. Afterwards, deep features are captured by training a stacked sparse autoencoder deep network with the fused features obtained above as inputs. Since the number of training samples of hyperspectral images is often very limited, which negatively affects the classification performance in deep learning, an effective way of constructing virtual samples is designed to generate more training samples, automatically. By jointly utilizing both the real and virtual samples, the parameters of the deep network can be better trained and updated, which can result in classification results of higher accuracies. Experiments performed on four real hyperspectral datasets show that the proposed method outperforms several recently proposed classification methods in terms of classification accuracies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dave完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
在水一方应助Dave采纳,获得10
4秒前
夏熠发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
miqilin发布了新的文献求助10
5秒前
ENT小卢总发布了新的文献求助10
5秒前
不想学习完成签到,获得积分10
5秒前
6秒前
tangz发布了新的文献求助10
6秒前
小溪苏完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792