总体规划
生产(经济)
计算机科学
运筹学
骨料(复合)
生产计划
过程(计算)
三重底线
排队论
维数(图论)
环境经济学
持续性
经济
微观经济学
工程类
数学
生物
计算机网络
操作系统
复合材料
材料科学
纯数学
生态学
作者
Gerd J. Hahn,Marcus Brandenburg
标识
DOI:10.1016/j.cor.2017.12.011
摘要
Process industries typically involve complex manufacturing operations and thus require adequate decision support for aggregate production planning (APP). In this paper, we focus on two relevant features of APP in process industry operations: (i) sustainable operations planning involving multiple alternative production modes/routings with specific production-related carbon emission and the social dimension of varying operating rates, (ii) integrated campaign planning with the operational level in order to anticipate production mix/volume/routing decisions on campaign lead times and WIP inventories as well as the impact of variability originating from a stochastic manufacturing environment. We focus on the issue of multi-level chemical production processes and highlight the mutual trade-offs along the triple bottom line concerning economic, environmental and social factors. To this end, production-related carbon emission and overtime working hours are considered as externalized factors as well as internalized ones in terms of resulting costs. A hierarchical decision support tool is presented that combines a deterministic linear programming model and an aggregate stochastic queuing network model. The approach is exemplified at a case example from the chemical industry to illustrate managerial insights and methodological benefits of our approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI