DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 理论计算机科学 物理 量子力学 政治学 政治 声学 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:228: 178-184 被引量:1105
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seven发布了新的文献求助10
1秒前
2秒前
小蘑菇应助封迎松采纳,获得10
3秒前
Z.one发布了新的文献求助10
3秒前
CodeCraft应助smy采纳,获得10
3秒前
4秒前
Morry完成签到,获得积分10
4秒前
4秒前
顺利曼香应助wwaakk采纳,获得10
5秒前
顶刊刺客cc完成签到,获得积分10
5秒前
5秒前
123发布了新的文献求助10
6秒前
JamesPei应助Z.one采纳,获得10
7秒前
8秒前
李健应助栗子的小母牛采纳,获得10
8秒前
Acadia发布了新的文献求助30
8秒前
深情安青应助wojiaomangguo采纳,获得10
8秒前
9秒前
可爱牛青发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
烟花应助团团采纳,获得10
11秒前
zzzsss发布了新的文献求助10
11秒前
12秒前
清欢发布了新的文献求助10
13秒前
bias发布了新的文献求助10
14秒前
15秒前
852应助魏蒙采纳,获得10
15秒前
15秒前
XudongHou发布了新的文献求助10
15秒前
欢呼海露完成签到,获得积分10
16秒前
韩soso发布了新的文献求助10
16秒前
L同学发布了新的文献求助10
17秒前
17秒前
yoeeng关注了科研通微信公众号
17秒前
18秒前
bkagyin应助bias采纳,获得10
19秒前
李爱国应助美味蟹黄堡采纳,获得10
19秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260841
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318187
捐赠科研通 2571677
什么是DOI,文献DOI怎么找? 1397150
科研通“疑难数据库(出版商)”最低求助积分说明 653663
邀请新用户注册赠送积分活动 632213