DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 政治 声学 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:228: 178-184 被引量:1313
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮快打烊吖完成签到 ,获得积分10
1秒前
3秒前
pu发布了新的文献求助10
3秒前
spyspy发布了新的文献求助20
5秒前
5秒前
呼呼完成签到 ,获得积分10
8秒前
8秒前
杨秀玲发布了新的文献求助10
9秒前
9秒前
leslie花花发布了新的文献求助10
9秒前
10秒前
鹏虫虫完成签到 ,获得积分10
11秒前
12秒前
可爱的函函应助牛牛采纳,获得10
14秒前
能干的茗发布了新的文献求助10
15秒前
欧阳正义发布了新的文献求助10
16秒前
16秒前
清脆南蕾发布了新的文献求助10
17秒前
852应助tomorrow9采纳,获得10
18秒前
凉薄少年应助乐观碧彤采纳,获得10
18秒前
李爱国应助夔kk采纳,获得10
19秒前
凉薄少年应助刘先生采纳,获得10
20秒前
xxttt完成签到,获得积分10
26秒前
28秒前
xunxunmimi完成签到,获得积分10
29秒前
天天快乐应助明明明采纳,获得30
29秒前
啦啦啦完成签到,获得积分10
30秒前
谢逸轩发布了新的文献求助10
31秒前
英姑应助行路人采纳,获得20
32秒前
jiangwei完成签到 ,获得积分10
32秒前
完美世界应助涵泽采纳,获得10
34秒前
37秒前
纯真的觅露完成签到,获得积分20
37秒前
sjdghgdhs发布了新的文献求助10
38秒前
Tony12完成签到,获得积分10
38秒前
星星轨迹发布了新的文献求助10
41秒前
谢逸轩完成签到,获得积分10
41秒前
41秒前
艺涵发布了新的文献求助10
42秒前
SciGPT应助叶小文采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498