DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 声学 政治 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:228: 178-184 被引量:1555
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Jocelyn_采纳,获得10
刚刚
科研通AI6应助wenbo采纳,获得10
1秒前
今后应助Yu采纳,获得10
1秒前
1秒前
生动成危完成签到 ,获得积分10
2秒前
2秒前
火羊宝发布了新的文献求助10
2秒前
科研通AI6应助tzz采纳,获得10
2秒前
曹孟德发布了新的文献求助10
3秒前
典雅的平松应助www采纳,获得10
3秒前
SciGPT应助张三毛采纳,获得10
4秒前
科研能手发布了新的文献求助10
4秒前
甜蜜冰萍发布了新的文献求助10
5秒前
6秒前
bkagyin应助英吉利25采纳,获得10
7秒前
脑洞疼应助霸气雪珍采纳,获得10
7秒前
浮游应助开朗的慕儿采纳,获得10
7秒前
solitude完成签到,获得积分10
7秒前
7秒前
充电宝应助朱朱采纳,获得10
8秒前
8秒前
彪壮的飞扬完成签到,获得积分10
9秒前
丹丹丹应助英吉利25采纳,获得10
9秒前
9秒前
李健应助zuoyou采纳,获得10
10秒前
宗沛柔完成签到,获得积分10
10秒前
11秒前
12秒前
diandong完成签到,获得积分10
13秒前
上官若男应助黎JX采纳,获得10
13秒前
15秒前
Ling完成签到,获得积分10
15秒前
CodeCraft应助甜蜜冰萍采纳,获得10
16秒前
16秒前
17秒前
17秒前
行者完成签到,获得积分10
17秒前
负责的曼香完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405208
求助须知:如何正确求助?哪些是违规求助? 4523568
关于积分的说明 14094020
捐赠科研通 4437274
什么是DOI,文献DOI怎么找? 2435535
邀请新用户注册赠送积分活动 1427732
关于科研通互助平台的介绍 1406034