DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 声学 政治 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:228: 178-184 被引量:1706
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
pbj发布了新的文献求助10
1秒前
1秒前
TiAmo完成签到,获得积分10
1秒前
2秒前
lxdfrank发布了新的文献求助10
2秒前
5秒前
balko发布了新的文献求助10
5秒前
卓卓完成签到,获得积分10
5秒前
沙心发布了新的文献求助10
6秒前
6秒前
咩咩发布了新的文献求助10
6秒前
6秒前
Adonis完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
mm完成签到 ,获得积分10
9秒前
10秒前
隐形曼青应助pbj采纳,获得10
11秒前
深情安青应助顺心的冬莲采纳,获得10
11秒前
ya发布了新的文献求助10
11秒前
13秒前
Satellites完成签到,获得积分10
13秒前
13秒前
15秒前
shenlan完成签到,获得积分10
15秒前
15秒前
科研通AI6.1应助kushdw采纳,获得10
16秒前
yitian完成签到 ,获得积分10
16秒前
郭佳怡完成签到,获得积分10
16秒前
XUU关闭了XUU文献求助
18秒前
小明发布了新的文献求助10
18秒前
18秒前
19秒前
cjh发布了新的文献求助10
19秒前
19秒前
bkagyin应助棠棠采纳,获得10
20秒前
bkagyin应助顾翩翩采纳,获得10
20秒前
郭佳怡发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792