DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 声学 政治 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:228: 178-184 被引量:1706
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄天完成签到 ,获得积分10
1秒前
心随以动完成签到 ,获得积分10
2秒前
奇奇怪怪的大鱼完成签到,获得积分10
2秒前
动听的飞松完成签到 ,获得积分10
6秒前
7秒前
出厂价完成签到,获得积分10
8秒前
董耀文完成签到,获得积分10
10秒前
Heart_of_Stone完成签到 ,获得积分10
10秒前
10秒前
Yi完成签到,获得积分10
13秒前
13秒前
王继完成签到,获得积分10
13秒前
卡片完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
pengyh8完成签到 ,获得积分10
15秒前
卡卡西完成签到,获得积分10
17秒前
勤奋的冬萱完成签到,获得积分10
17秒前
Yael发布了新的文献求助10
17秒前
愤怒的水绿完成签到,获得积分10
17秒前
hahaha6789y完成签到,获得积分10
18秒前
maybe完成签到,获得积分10
20秒前
hahaha2完成签到,获得积分10
21秒前
BlueKitty完成签到,获得积分10
22秒前
sheep完成签到,获得积分10
23秒前
spider534完成签到,获得积分10
23秒前
Tom2077完成签到,获得积分10
23秒前
simon666完成签到,获得积分10
23秒前
24秒前
Mo完成签到,获得积分10
24秒前
无情的冰香完成签到 ,获得积分10
24秒前
霡霂完成签到,获得积分10
24秒前
hahaha1完成签到,获得积分10
24秒前
小马甲应助Yael采纳,获得10
24秒前
量子咸鱼K完成签到,获得积分10
26秒前
徐彬荣完成签到,获得积分10
27秒前
PaperCrane完成签到,获得积分10
28秒前
surlamper完成签到,获得积分10
29秒前
无奈的代珊完成签到 ,获得积分10
35秒前
任性的思远完成签到 ,获得积分10
36秒前
笑傲完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539119
求助须知:如何正确求助?哪些是违规求助? 4625952
关于积分的说明 14597124
捐赠科研通 4566751
什么是DOI,文献DOI怎么找? 2503572
邀请新用户注册赠送积分活动 1481546
关于科研通互助平台的介绍 1453044