DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 声学 政治 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:228: 178-184 被引量:1706
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
是我呀吼完成签到,获得积分10
刚刚
1秒前
了一李完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
tyt完成签到 ,获得积分10
1秒前
1秒前
ctttt发布了新的文献求助10
2秒前
残剑月完成签到,获得积分10
2秒前
2秒前
2秒前
pxin完成签到,获得积分10
2秒前
ym完成签到 ,获得积分10
3秒前
我滴个完成签到,获得积分10
3秒前
隐形曼青应助七七采纳,获得10
3秒前
失眠的飞柏完成签到,获得积分10
4秒前
Legend完成签到,获得积分10
4秒前
sun发布了新的文献求助10
4秒前
剩下的盛夏完成签到,获得积分10
5秒前
田様应助lei1987采纳,获得10
5秒前
Bdk完成签到 ,获得积分10
5秒前
5秒前
残剑月发布了新的文献求助10
6秒前
6秒前
打打应助雷雷采纳,获得10
7秒前
7秒前
不安冰棍完成签到,获得积分20
7秒前
无语的怜梦完成签到,获得积分10
7秒前
7秒前
雨的印记发布了新的文献求助30
8秒前
锋芒不毕露完成签到,获得积分10
8秒前
可靠诗筠完成签到 ,获得积分10
8秒前
现代海蓝完成签到,获得积分10
8秒前
9秒前
美好的羊青完成签到,获得积分10
9秒前
zhangyu完成签到,获得积分10
9秒前
时肆万完成签到,获得积分10
9秒前
9秒前
OuO完成签到,获得积分10
9秒前
慕青应助homelo采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242