DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 声学 政治 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:228: 178-184 被引量:1555
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你说要叫啥完成签到,获得积分10
刚刚
娜娜完成签到,获得积分10
刚刚
hi_zhanghao完成签到,获得积分0
1秒前
明理乘云发布了新的文献求助10
1秒前
1秒前
2秒前
林药师完成签到 ,获得积分10
2秒前
IVY1300完成签到,获得积分10
2秒前
果果完成签到,获得积分10
2秒前
peter完成签到,获得积分10
2秒前
懵懂的子骞完成签到 ,获得积分10
2秒前
Shine完成签到 ,获得积分10
2秒前
啊呀完成签到,获得积分10
3秒前
3秒前
袁科研完成签到,获得积分10
3秒前
NatureEnergy完成签到 ,获得积分10
3秒前
彤彤完成签到 ,获得积分10
4秒前
4秒前
无情颖完成签到 ,获得积分10
4秒前
5秒前
Owen应助古往今来采纳,获得10
6秒前
存在完成签到,获得积分10
6秒前
阿橘完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
乐园鸟完成签到,获得积分10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
Frank应助科研通管家采纳,获得10
7秒前
缓慢黑米完成签到,获得积分10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
山雀完成签到,获得积分10
7秒前
大个应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
SciGPT应助初之采纳,获得10
8秒前
BareBear应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482836
求助须知:如何正确求助?哪些是违规求助? 4583525
关于积分的说明 14390528
捐赠科研通 4512908
什么是DOI,文献DOI怎么找? 2473262
邀请新用户注册赠送积分活动 1459272
关于科研通互助平台的介绍 1432886