Long short-term memory based on a reward/punishment strategy for recurrent neural networks

惩罚(心理学) 计算机科学 期限(时间) 短时记忆 循环神经网络 人工神经网络 人工智能 认知心理学 心理学 发展心理学 量子力学 物理
作者
Jiangjiang Liu,Biao Luo,Pengfei Yan,Ding Wang,Derong Liu
标识
DOI:10.1109/yac.2017.7967428
摘要

Recurrent neural networks and their variants have received huge success in many difficult tasks, such as handwriting recognition and generation, natural language processing, acoustic modeling of speech, and so on. As a kind of recurrent neural network architectures, the long short-term memory (LSTM) has attracted great attention. Most research works focus on its structures, training algorithms and topology structures. As an improvement to the structure of LSTM, a reward/punishment strategy is developed for LSTM in this paper, which we call RP-LSTM. In RP-LSTM, a reward/punishment (RP) strategy is proposed to evaluate its memory cells' memorization such that it improves its efficiency by forgetting more reasonably. Analysis of properties of the developed RP-LSTM is conducted from the neuroscience aspect. To test the performance of the developed RP-LSTM, comparative simulation studies are conducted on three structures, i.e., LSTM, LSTM with forget gate (LSTM-FG) and RP-LSTM. Simulation results on sentiment analysis model and sequence to sequence model demonstrate that RP-LSTM achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
selfevidbet完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分10
1秒前
漂亮妙柏发布了新的文献求助10
1秒前
2秒前
wwj1009完成签到 ,获得积分10
2秒前
2秒前
3秒前
上好佳完成签到,获得积分10
3秒前
huangJP发布了新的文献求助10
4秒前
ysj发布了新的文献求助100
4秒前
wangxipeng完成签到,获得积分10
5秒前
water应助左丘傲菡采纳,获得10
5秒前
5秒前
xiaopan完成签到,获得积分10
5秒前
小周完成签到 ,获得积分10
6秒前
6秒前
连山发布了新的文献求助10
7秒前
kingwill应助HHH采纳,获得20
7秒前
DocRyan发布了新的文献求助10
7秒前
8秒前
8秒前
危机的慕卉完成签到 ,获得积分10
8秒前
8秒前
Carpe_Diem_2079完成签到,获得积分10
8秒前
李健应助游舒平采纳,获得10
8秒前
李某某发布了新的文献求助10
8秒前
8秒前
夕荀发布了新的文献求助10
9秒前
qqqqqqy完成签到,获得积分10
9秒前
9秒前
甜蜜慕凝完成签到,获得积分10
10秒前
10秒前
aluo完成签到,获得积分20
11秒前
泉水激石完成签到,获得积分10
11秒前
badada完成签到,获得积分10
11秒前
闪闪绮露完成签到,获得积分10
12秒前
苏苏完成签到,获得积分10
12秒前
Xx完成签到,获得积分10
12秒前
TH发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118