Long short-term memory based on a reward/punishment strategy for recurrent neural networks

惩罚(心理学) 计算机科学 期限(时间) 短时记忆 循环神经网络 人工神经网络 人工智能 认知心理学 心理学 发展心理学 物理 量子力学
作者
Jiangjiang Liu,Biao Luo,Pengfei Yan,Ding Wang,Derong Liu
标识
DOI:10.1109/yac.2017.7967428
摘要

Recurrent neural networks and their variants have received huge success in many difficult tasks, such as handwriting recognition and generation, natural language processing, acoustic modeling of speech, and so on. As a kind of recurrent neural network architectures, the long short-term memory (LSTM) has attracted great attention. Most research works focus on its structures, training algorithms and topology structures. As an improvement to the structure of LSTM, a reward/punishment strategy is developed for LSTM in this paper, which we call RP-LSTM. In RP-LSTM, a reward/punishment (RP) strategy is proposed to evaluate its memory cells' memorization such that it improves its efficiency by forgetting more reasonably. Analysis of properties of the developed RP-LSTM is conducted from the neuroscience aspect. To test the performance of the developed RP-LSTM, comparative simulation studies are conducted on three structures, i.e., LSTM, LSTM with forget gate (LSTM-FG) and RP-LSTM. Simulation results on sentiment analysis model and sequence to sequence model demonstrate that RP-LSTM achieves better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助aaa采纳,获得20
1秒前
1秒前
1秒前
xielixin2001完成签到,获得积分10
1秒前
颜依丝完成签到,获得积分10
2秒前
无辜秀发布了新的文献求助10
2秒前
山大琦子发布了新的文献求助10
3秒前
Veronica Mew完成签到 ,获得积分10
4秒前
orixero应助Rjy采纳,获得10
4秒前
ZXY完成签到 ,获得积分10
4秒前
Criminology34应助KK采纳,获得10
4秒前
高高的笑旋完成签到,获得积分20
4秒前
4秒前
Oliver完成签到,获得积分10
5秒前
枯荣发布了新的文献求助20
5秒前
刻苦寒云发布了新的文献求助10
5秒前
田様应助李木辰采纳,获得10
5秒前
Joshua发布了新的文献求助20
5秒前
叽里咕卢完成签到,获得积分10
5秒前
龙华之士发布了新的文献求助10
5秒前
asd应助暗能量采纳,获得30
6秒前
风轻完成签到,获得积分10
6秒前
6秒前
zzr发布了新的文献求助10
7秒前
jason发布了新的文献求助10
7秒前
清秀的月亮完成签到,获得积分10
7秒前
8秒前
orixero应助合适清采纳,获得10
8秒前
8秒前
8秒前
9秒前
FashionBoy应助韩小小采纳,获得10
10秒前
Hello应助荀连虎采纳,获得10
10秒前
我是老大应助YE采纳,获得10
10秒前
听枫完成签到,获得积分10
10秒前
汉堡包应助lyrtim采纳,获得10
10秒前
风雅发布了新的文献求助10
11秒前
阳阳完成签到,获得积分10
11秒前
muguang67完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646864
求助须知:如何正确求助?哪些是违规求助? 4772505
关于积分的说明 15036761
捐赠科研通 4805617
什么是DOI,文献DOI怎么找? 2569802
邀请新用户注册赠送积分活动 1526736
关于科研通互助平台的介绍 1485906