亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model

肌萎缩侧索硬化 一致性 医学 队列 人口 统计的 比例危险模型 预后变量 自举(财务) 接收机工作特性 自然史 生存分析 疾病 统计 内科学 多元分析 计量经济学 数学 环境卫生 经济
作者
Henk-Jan Westeneng,Thomas P. A. Debray,Anne E Visser,Ruben P.A. van Eijk,James Rooney,Andrea Calvo,Sarah Martin,Christopher J. McDermott,Alexander G. Thompson,Susana Pinto,Xenia Kobeleva,Angela Rosenbohm,Beatrice Stubendorff,Helma Sommer,Bas Middelkoop,Annelot M. Dekker,Joke J.F.A. van Vugt,Wouter van Rheenen,Alice Vajda,Mark Heverin,Mbombe Kazoka,Hannah Hollinger,Marta Gromicho,Sonja Körner,Thomas Ringer,Annekathrin Rödiger,A. Gunkel,Christopher E. Shaw,Annelien L. Bredenoord,Michael A. van Es,Philippe Corcia,Philippe Couratier,Markus Weber,Julian Großkreutz,Albert C. Ludolph,Susanne Petri,Mamede de Carvalho,Philip Van Damme,Kevin Talbot,Martin R. Turner,Pamela J. Shaw,Ammar Al‐Chalabi,Adriano Chiò,Orla Hardiman,Karel G.M. Moons,Jan H. Veldink,Leonard H. van den Berg
出处
期刊:Lancet Neurology [Elsevier]
卷期号:17 (5): 423-433 被引量:357
标识
DOI:10.1016/s1474-4422(18)30089-9
摘要

Summary

Background

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neuron disease with a variable natural history. There are no accurate models that predict the disease course and outcomes, which complicates risk assessment and counselling for individual patients, stratification of patients for trials, and timing of interventions. We therefore aimed to develop and validate a model for predicting a composite survival endpoint for individual patients with ALS.

Methods

We obtained data for patients from 14 specialised ALS centres (each one designated as a cohort) in Belgium, France, the Netherlands, Germany, Ireland, Italy, Portugal, Switzerland, and the UK. All patients were diagnosed in the centres after excluding other diagnoses and classified according to revised El Escorial criteria. We assessed 16 patient characteristics as potential predictors of a composite survival outcome (time between onset of symptoms and non-invasive ventilation for more than 23 h per day, tracheostomy, or death) and applied backward elimination with bootstrapping in the largest population-based dataset for predictor selection. Data were gathered on the day of diagnosis or as soon as possible thereafter. Predictors that were selected in more than 70% of the bootstrap resamples were used to develop a multivariable Royston-Parmar model for predicting the composite survival outcome in individual patients. We assessed the generalisability of the model by estimating heterogeneity of predictive accuracy across external populations (ie, populations not used to develop the model) using internal–external cross-validation, and quantified the discrimination using the concordance (c) statistic (area under the receiver operator characteristic curve) and calibration using a calibration slope.

Findings

Data were collected between Jan 1, 1992, and Sept 22, 2016 (the largest data-set included data from 1936 patients). The median follow-up time was 97·5 months (IQR 52·9–168·5). Eight candidate predictors entered the prediction model: bulbar versus non-bulbar onset (univariable hazard ratio [HR] 1·71, 95% CI 1·63–1·79), age at onset (1·03, 1·03–1·03), definite versus probable or possible ALS (1·47, 1·39–1·55), diagnostic delay (0·52, 0·51–0·53), forced vital capacity (HR 0·99, 0·99–0·99), progression rate (6·33, 5·92–6·76), frontotemporal dementia (1·34, 1·20–1·50), and presence of a C9orf72 repeat expansion (1·45, 1·31–1·61), all p<0·0001. The c statistic for external predictive accuracy of the model was 0·78 (95% CI 0·77–0·80; 95% prediction interval [PI] 0·74–0·82) and the calibration slope was 1·01 (95% CI 0·95–1·07; 95% PI 0·83–1·18). The model was used to define five groups with distinct median predicted (SE) and observed (SE) times in months from symptom onset to the composite survival outcome: very short 17·7 (0·20), 16·5 (0·23); short 25·3 (0·06), 25·2 (0·35); intermediate 32·2 (0·09), 32·8 (0·46); long 43·7 (0·21), 44·6 (0·74); and very long 91·0 (1·84), 85·6 (1·96).

Interpretation

We have developed an externally validated model to predict survival without tracheostomy and non-invasive ventilation for more than 23 h per day in European patients with ALS. This model could be applied to individualised patient management, counselling, and future trial design, but to maximise the benefit and prevent harm it is intended to be used by medical doctors only.

Funding

Netherlands ALS Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
layers发布了新的文献求助10
8秒前
生动的冰蓝应助咕咕咕采纳,获得10
18秒前
layers完成签到,获得积分10
27秒前
46秒前
binxman发布了新的文献求助10
52秒前
56秒前
专注的芷蕾完成签到,获得积分10
1分钟前
binxman完成签到,获得积分10
1分钟前
星辰大海应助YYQ采纳,获得10
1分钟前
情怀应助liuzr采纳,获得10
1分钟前
1分钟前
YYQ发布了新的文献求助10
1分钟前
zc0178应助科研通管家采纳,获得10
2分钟前
2分钟前
春秋发布了新的文献求助10
2分钟前
2分钟前
wykion完成签到,获得积分10
2分钟前
2分钟前
樱桃猴子完成签到,获得积分10
3分钟前
糖伯虎完成签到 ,获得积分10
3分钟前
3分钟前
liuzr发布了新的文献求助10
3分钟前
3分钟前
YYQ完成签到,获得积分10
3分钟前
忧伤的绍辉完成签到 ,获得积分10
3分钟前
樱桃猴子应助科研通管家采纳,获得20
4分钟前
mpenny77发布了新的文献求助10
4分钟前
4分钟前
mpenny77完成签到,获得积分10
4分钟前
柠檬发布了新的文献求助10
4分钟前
Isaac完成签到 ,获得积分10
4分钟前
yexu完成签到,获得积分10
4分钟前
研友_ndDGVn完成签到 ,获得积分10
5分钟前
舒心的晟睿完成签到 ,获得积分10
5分钟前
joanna完成签到,获得积分10
5分钟前
5分钟前
6分钟前
xiaogang127完成签到 ,获得积分10
6分钟前
likaixuanzzz完成签到 ,获得积分10
6分钟前
季英兰发布了新的文献求助10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294504
求助须知:如何正确求助?哪些是违规求助? 2930450
关于积分的说明 8446056
捐赠科研通 2602612
什么是DOI,文献DOI怎么找? 1420680
科研通“疑难数据库(出版商)”最低求助积分说明 660644
邀请新用户注册赠送积分活动 643433