Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model

肌萎缩侧索硬化 医学 物理医学与康复 神经科学 疾病 心理学 内科学
作者
Henk-Jan Westeneng,Thomas P. A. Debray,Anne E Visser,Ruben P.A. van Eijk,James Rooney,Andrea Calvo,Sarah Martin,Christopher McDermott,Alexander G. Thompson,Susana Pinto,Xenia Kobeleva,Angela Rosenbohm,Beatrice Stubendorff,Helma Sommer,Bas Middelkoop,Annelot M Dekker,Joke J.F.A. van Vugt,Wouter van Rheenen,Alice Vajda,Mark Heverin
出处
期刊:Lancet Neurology [Elsevier BV]
卷期号:17 (5): 423-433 被引量:446
标识
DOI:10.1016/s1474-4422(18)30089-9
摘要

Summary

Background

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neuron disease with a variable natural history. There are no accurate models that predict the disease course and outcomes, which complicates risk assessment and counselling for individual patients, stratification of patients for trials, and timing of interventions. We therefore aimed to develop and validate a model for predicting a composite survival endpoint for individual patients with ALS.

Methods

We obtained data for patients from 14 specialised ALS centres (each one designated as a cohort) in Belgium, France, the Netherlands, Germany, Ireland, Italy, Portugal, Switzerland, and the UK. All patients were diagnosed in the centres after excluding other diagnoses and classified according to revised El Escorial criteria. We assessed 16 patient characteristics as potential predictors of a composite survival outcome (time between onset of symptoms and non-invasive ventilation for more than 23 h per day, tracheostomy, or death) and applied backward elimination with bootstrapping in the largest population-based dataset for predictor selection. Data were gathered on the day of diagnosis or as soon as possible thereafter. Predictors that were selected in more than 70% of the bootstrap resamples were used to develop a multivariable Royston-Parmar model for predicting the composite survival outcome in individual patients. We assessed the generalisability of the model by estimating heterogeneity of predictive accuracy across external populations (ie, populations not used to develop the model) using internal–external cross-validation, and quantified the discrimination using the concordance (c) statistic (area under the receiver operator characteristic curve) and calibration using a calibration slope.

Findings

Data were collected between Jan 1, 1992, and Sept 22, 2016 (the largest data-set included data from 1936 patients). The median follow-up time was 97·5 months (IQR 52·9–168·5). Eight candidate predictors entered the prediction model: bulbar versus non-bulbar onset (univariable hazard ratio [HR] 1·71, 95% CI 1·63–1·79), age at onset (1·03, 1·03–1·03), definite versus probable or possible ALS (1·47, 1·39–1·55), diagnostic delay (0·52, 0·51–0·53), forced vital capacity (HR 0·99, 0·99–0·99), progression rate (6·33, 5·92–6·76), frontotemporal dementia (1·34, 1·20–1·50), and presence of a C9orf72 repeat expansion (1·45, 1·31–1·61), all p<0·0001. The c statistic for external predictive accuracy of the model was 0·78 (95% CI 0·77–0·80; 95% prediction interval [PI] 0·74–0·82) and the calibration slope was 1·01 (95% CI 0·95–1·07; 95% PI 0·83–1·18). The model was used to define five groups with distinct median predicted (SE) and observed (SE) times in months from symptom onset to the composite survival outcome: very short 17·7 (0·20), 16·5 (0·23); short 25·3 (0·06), 25·2 (0·35); intermediate 32·2 (0·09), 32·8 (0·46); long 43·7 (0·21), 44·6 (0·74); and very long 91·0 (1·84), 85·6 (1·96).

Interpretation

We have developed an externally validated model to predict survival without tracheostomy and non-invasive ventilation for more than 23 h per day in European patients with ALS. This model could be applied to individualised patient management, counselling, and future trial design, but to maximise the benefit and prevent harm it is intended to be used by medical doctors only.

Funding

Netherlands ALS Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢许杯商应助Mansis采纳,获得10
1秒前
虎啊虎啊发布了新的文献求助10
1秒前
1秒前
2秒前
szh123完成签到 ,获得积分10
2秒前
feimengxia完成签到 ,获得积分10
2秒前
wanci应助Garfieldlilac采纳,获得10
3秒前
Jasper应助像个小蛤蟆采纳,获得10
3秒前
地平完成签到,获得积分10
4秒前
丘比特应助如初采纳,获得10
4秒前
5秒前
jichao完成签到,获得积分10
5秒前
sevenseven完成签到,获得积分10
6秒前
lzg完成签到,获得积分10
6秒前
zhuxiaonian完成签到,获得积分10
6秒前
汤圆完成签到,获得积分10
7秒前
小蘑菇应助喜庆采纳,获得10
7秒前
周娅敏发布了新的文献求助10
7秒前
8秒前
sgs完成签到,获得积分10
8秒前
自行输入昵称完成签到 ,获得积分10
9秒前
戚薇发布了新的文献求助10
9秒前
彭于晏应助sonder采纳,获得10
9秒前
宋嘉新完成签到,获得积分10
10秒前
Bran应助Ccc采纳,获得20
10秒前
10秒前
玛琪玛小姐的狗完成签到,获得积分10
10秒前
11秒前
11秒前
squirrel完成签到,获得积分10
11秒前
13秒前
TT完成签到,获得积分10
13秒前
爱因斯宣完成签到,获得积分20
15秒前
英俊的铭应助山雀采纳,获得10
15秒前
金枪鱼子发布了新的文献求助150
15秒前
豆子发布了新的文献求助20
15秒前
科研通AI2S应助Mansis采纳,获得10
16秒前
喜庆发布了新的文献求助10
16秒前
yangyang发布了新的文献求助10
16秒前
Lcccccc发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582