清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model

肌萎缩侧索硬化 医学 物理医学与康复 神经科学 疾病 心理学 内科学
作者
Henk-Jan Westeneng,Thomas P. A. Debray,Anne E Visser,Ruben P.A. van Eijk,James Rooney,Andrea Calvo,Sarah Martin,Christopher McDermott,Alexander G. Thompson,Susana Pinto,Xenia Kobeleva,Angela Rosenbohm,Beatrice Stubendorff,Helma Sommer,Bas Middelkoop,Annelot M Dekker,Joke J.F.A. van Vugt,Wouter van Rheenen,Alice Vajda,Mark Heverin
出处
期刊:Lancet Neurology [Elsevier]
卷期号:17 (5): 423-433 被引量:464
标识
DOI:10.1016/s1474-4422(18)30089-9
摘要

Summary

Background

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neuron disease with a variable natural history. There are no accurate models that predict the disease course and outcomes, which complicates risk assessment and counselling for individual patients, stratification of patients for trials, and timing of interventions. We therefore aimed to develop and validate a model for predicting a composite survival endpoint for individual patients with ALS.

Methods

We obtained data for patients from 14 specialised ALS centres (each one designated as a cohort) in Belgium, France, the Netherlands, Germany, Ireland, Italy, Portugal, Switzerland, and the UK. All patients were diagnosed in the centres after excluding other diagnoses and classified according to revised El Escorial criteria. We assessed 16 patient characteristics as potential predictors of a composite survival outcome (time between onset of symptoms and non-invasive ventilation for more than 23 h per day, tracheostomy, or death) and applied backward elimination with bootstrapping in the largest population-based dataset for predictor selection. Data were gathered on the day of diagnosis or as soon as possible thereafter. Predictors that were selected in more than 70% of the bootstrap resamples were used to develop a multivariable Royston-Parmar model for predicting the composite survival outcome in individual patients. We assessed the generalisability of the model by estimating heterogeneity of predictive accuracy across external populations (ie, populations not used to develop the model) using internal–external cross-validation, and quantified the discrimination using the concordance (c) statistic (area under the receiver operator characteristic curve) and calibration using a calibration slope.

Findings

Data were collected between Jan 1, 1992, and Sept 22, 2016 (the largest data-set included data from 1936 patients). The median follow-up time was 97·5 months (IQR 52·9–168·5). Eight candidate predictors entered the prediction model: bulbar versus non-bulbar onset (univariable hazard ratio [HR] 1·71, 95% CI 1·63–1·79), age at onset (1·03, 1·03–1·03), definite versus probable or possible ALS (1·47, 1·39–1·55), diagnostic delay (0·52, 0·51–0·53), forced vital capacity (HR 0·99, 0·99–0·99), progression rate (6·33, 5·92–6·76), frontotemporal dementia (1·34, 1·20–1·50), and presence of a C9orf72 repeat expansion (1·45, 1·31–1·61), all p<0·0001. The c statistic for external predictive accuracy of the model was 0·78 (95% CI 0·77–0·80; 95% prediction interval [PI] 0·74–0·82) and the calibration slope was 1·01 (95% CI 0·95–1·07; 95% PI 0·83–1·18). The model was used to define five groups with distinct median predicted (SE) and observed (SE) times in months from symptom onset to the composite survival outcome: very short 17·7 (0·20), 16·5 (0·23); short 25·3 (0·06), 25·2 (0·35); intermediate 32·2 (0·09), 32·8 (0·46); long 43·7 (0·21), 44·6 (0·74); and very long 91·0 (1·84), 85·6 (1·96).

Interpretation

We have developed an externally validated model to predict survival without tracheostomy and non-invasive ventilation for more than 23 h per day in European patients with ALS. This model could be applied to individualised patient management, counselling, and future trial design, but to maximise the benefit and prevent harm it is intended to be used by medical doctors only.

Funding

Netherlands ALS Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
16秒前
37秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
wanci应助john2333采纳,获得10
56秒前
奋斗的小研完成签到,获得积分10
1分钟前
1分钟前
Jin完成签到,获得积分10
1分钟前
jin完成签到,获得积分10
1分钟前
1分钟前
aming发布了新的文献求助10
1分钟前
john2333关注了科研通微信公众号
1分钟前
2分钟前
melody完成签到 ,获得积分10
2分钟前
john2333发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
深情安青应助www采纳,获得10
2分钟前
Scheduling完成签到 ,获得积分10
2分钟前
bigtree完成签到 ,获得积分10
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
开心惜梦完成签到,获得积分10
3分钟前
yan完成签到,获得积分10
3分钟前
3分钟前
华仔应助圈圈采纳,获得10
3分钟前
3分钟前
CC完成签到,获得积分10
3分钟前
CC发布了新的文献求助10
3分钟前
4分钟前
溯溯完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
4分钟前
ccc完成签到 ,获得积分10
4分钟前
5分钟前
www发布了新的文献求助10
5分钟前
郭强完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304