生物
转录因子
内质网
细胞生物学
棕榈酰化
细胞应激反应
乳糖谷胱甘肽裂解酶
染色体易位
谷胱甘肽
生物化学
基因
半胱氨酸
战斗或逃跑反应
酶
作者
Mei Duan,Rongxue Zhang,Fugui Zhu,Zhenqian Zhang,Lanming Gou,Jiangqi Wen,Jiangli Dong,Tao Wang
出处
期刊:The Plant Cell
[Oxford University Press]
日期:2017-07-01
卷期号:29 (7): 1748-1772
被引量:118
摘要
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play a vital role in the response to drought stress. Here, we report a lipid-anchored NACsa TF in Medicago falcata MfNACsa is an essential regulator of plant tolerance to drought stress, resulting in the differential expression of genes involved in oxidation reduction and lipid transport and localization. MfNACsa is associated with membranes under unstressed conditions and, more specifically, is targeted to the plasma membrane through S-palmitoylation. However, a Cys26-to-Ser mutation or inhibition of S-palmitoylation results in MfNACsa retention in the endoplasmic reticulum/Golgi. Under drought stress, MfNACsa translocates to the nucleus through de-S-palmitoylation mediated by the thioesterase MtAPT1, as coexpression of APT1 results in the nuclear translocation of MfNACsa, whereas mutation of the catalytic site of APT1 results in colocalization with MfNACsa and membrane retention of MfNACsa. Specifically, the nuclear MfNACsa binds the glyoxalase I (MtGlyl) promoter under drought stress, resulting in drought tolerance by maintaining the glutathione pool in a reduced state, and the process is dependent on the APT1-NACsa regulatory module. Our findings reveal a novel mechanism for the nuclear translocation of an S-palmitoylated NAC in response to stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI