肌内脂肪
卷积神经网络
均方误差
深度学习
超声波
人工智能
人工神经网络
体内
模式识别(心理学)
计算机科学
数学
统计
医学
动物科学
放射科
生物
生物技术
作者
Johannes Kvam,Jørgen Kongsro
标识
DOI:10.1016/j.compag.2017.11.020
摘要
Intramuscular fat (IMF) in pigs determines the succulency and attractiveness of the meat. This paper presents a non-invasive in vivo method for estimating IMF using deep convolutional neural networks on ultrasound images. The method performs best on moderate to low IMF images <6% giving a correlation of R=0.82 and root-mean-square-error RMSE=1.2. At higher IMF content the convolutional neural network fails to generalize due to image quality and lack of training data.
科研通智能强力驱动
Strongly Powered by AbleSci AI