Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes

传感器融合 融合 稳健性(进化) 保险丝(电气) 跟踪(教育)
作者
Guowei Wan,Xiaolong Yang,Cai Renlan,Li Hao,Wang Hao,Song Shiyu
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:28
标识
DOI:10.1109/icra.2018.8461224
摘要

We present a robust and precise localization system that achieves centimeter-level localization accuracy in disparate city scenes. Our system adaptively uses information from complementary sensors such as GNSS, LiDAR, and IMU to achieve high localization accuracy and resilience in challenging scenes, such as urban downtown, highways, and tunnels. Rather than relying only on LiDAR intensity or 3D geometry, we make innovative use of LiDAR intensity and altitude cues to significantly improve localization system accuracy and robustness. Our GNSS RTK module utilizes the help of the multi-sensor fusion framework and achieves a better ambiguity resolution success rate. An error-state Kalman filter is applied to fuse the localization measurements from different sources with novel uncertainty estimation. We validate, in detail, the effectiveness of our approaches, achieving 5-10cm RMS accuracy and outperforming previous state-of-the-art systems. Importantly, our system, while deployed in a large autonomous driving fleet, made our vehicles fully autonomous in crowded city streets despite road construction that occurred from time to time. A dataset including more than 60 km real traffic driving in various urban roads is used to comprehensively test our system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hins完成签到,获得积分10
1秒前
小二郎应助洺全采纳,获得10
2秒前
土豆不叫马铃薯完成签到,获得积分20
2秒前
2秒前
hsadu完成签到,获得积分10
2秒前
兴奋的大母猴完成签到,获得积分10
2秒前
舒适的淇发布了新的文献求助10
2秒前
情怀应助Nakacoke77采纳,获得10
3秒前
CodeCraft应助bearvik采纳,获得10
3秒前
七七完成签到 ,获得积分10
4秒前
jinggaier发布了新的文献求助10
4秒前
6秒前
坚强幼晴发布了新的文献求助10
6秒前
敢敢完成签到,获得积分10
7秒前
CC发布了新的文献求助30
8秒前
8秒前
Ava应助顶刊采纳,获得10
9秒前
9秒前
糖宝完成签到,获得积分10
9秒前
kui水买发布了新的文献求助10
10秒前
领导范儿应助勤恳的丹珍采纳,获得10
10秒前
10秒前
寻觅完成签到,获得积分10
11秒前
RAY完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
脱贫致富关注了科研通微信公众号
13秒前
13秒前
14秒前
CodeCraft应助shenghaowen采纳,获得10
14秒前
洺全发布了新的文献求助10
14秒前
现代师发布了新的文献求助10
15秒前
15秒前
16秒前
云玉溪应助小舒采纳,获得20
16秒前
CipherSage应助美满的怀蝶采纳,获得10
17秒前
17秒前
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958292
求助须知:如何正确求助?哪些是违规求助? 3504494
关于积分的说明 11118663
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788457
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582