High Reversibility of Zinc Metal Anode for High-Energy Aqueous Batteries

阳极 电解质 电偶阳极 锌酸盐 水溶液 电化学 金属 电池(电) 材料科学 无机化学 碱性电池 化学 化学工程 冶金 电极 有机化学 阴极保护 功率(物理) 物理 物理化学 量子力学 工程类
作者
Fei Wang,Chunsheng Wang,Kang Xu
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (5): 503-503 被引量:1
标识
DOI:10.1149/ma2017-02/5/503
摘要

Since the invention of the first battery by Volta in 1796, metallic zinc has been regarded as an ideal anode material for the aqueous batteries systems for its high theoretical capacity (820 mAh/g), low negative potential (-0.762 V vs. SHE), abundance, low toxicity and the intrinsic safety advantages that arise from nonflammable aqueous electrolytes. Recently, rechargeable batteries using zinc metal anode have been investigated extensively. However, an important barrier of the Zn-based batteries is the poor cycle life, which mainly derives from the drawbacks of the Zn metal anode and the electrolyte. The cyclability of the traditional alkaline Zn-based batteries is mainly restricted by dendrite growth, high solubility of discharge product (i.e. zincate) in the electrolytes, water loss from the liquid electrolyte, electrolyte depletion caused by the narrow electrochemical window. In most previous studies, the zinc-based aqueous batteries suffered from low columbic efficiency (CE) even using the high rate to minimize the side reaction, which means the Zn-based batteries usually require regular topping up with electrolyte. Significant excessive zinc has to been used to keep the cycle stability, results in sub-optimal utilization of the zinc theoretical capacity, as in the case of the lithium metal anode. The goal of achieving high CE in aqueous zinc metal batteries remained allusive. The poor reversibility and low CE of the Zn metal anode is closely related with the Zn (II) cation solvate structure in the aqueous electrolyte. The hydration effects of the Zn (II) cation in water is so significant that the zinc hydroxide is easily forms. The slight but non-ignorable water decomposition caused by the narrow stability window produces more hydroxyl ion and certainly aggravates the formation of zinc hydroxide. Zinc hydroxide converts into insoluble zinc oxide (ZnO) when the solubility limit of the hydroxide species is reached. Formation of solid ZnO can be a difficult process to reverse during recharge, as it relies on the resolubilization of the Zn species back into the electrolyte prior to reduction. We report the development of a highly concentrated neutral electrolyte that alters Zn(II) solvation structure resulting in the dendrite-free plating of Zn metal with high CE. The suppression of the zinc hydration was achieved through the formation of [Zn-TFSI] solvation structure instead of the [Zn-6H 2 O] 2+ solvation structure. The solvation structure change is ascribed to the introduction of the TFSI - anion, which has strong coordination to the Zn (II) cation in concentrated electrolytes. The solvation structure change was investigated via a combination of IR spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT) calculations and molecular dynamics (MD) simulations using polarizable force fields. We demonstrate an exceptional performance of zinc metal cells containing Zn-based aqueous electrolyte that delivered an unprecedented high practical energy density of 300Wh/kg (based on both the cathode and anode electrodes). This study opens an avenue for the highly efficient utilization of zinc metal electrodes for advanced energy storage applications while the fundamental knowledge gained can also be applied to other metal anodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qing完成签到 ,获得积分10
1秒前
李健应助Rebecca采纳,获得10
1秒前
jkaaa完成签到,获得积分10
3秒前
fanfan完成签到 ,获得积分10
3秒前
AteeqBaloch完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
甜甜的以筠完成签到 ,获得积分10
4秒前
cugwzr完成签到,获得积分10
5秒前
故乡发布了新的文献求助30
5秒前
laber应助Bryan采纳,获得50
5秒前
芊芊完成签到 ,获得积分10
6秒前
飘逸晓博完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
chrysan完成签到,获得积分10
12秒前
程新亮完成签到 ,获得积分10
12秒前
exquisite完成签到,获得积分10
13秒前
14秒前
16秒前
淡淡的小蘑菇完成签到 ,获得积分10
18秒前
瘦瘦凌丝完成签到 ,获得积分10
18秒前
为你等候完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助30
19秒前
韧迹完成签到 ,获得积分10
21秒前
墨墨完成签到 ,获得积分10
22秒前
英勇夏旋完成签到,获得积分10
24秒前
小雅完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
痴情的靖柔完成签到 ,获得积分10
27秒前
。。完成签到 ,获得积分10
28秒前
淡然谷秋完成签到 ,获得积分10
30秒前
31秒前
pai先生完成签到 ,获得积分10
33秒前
35秒前
乌云乌云快走开完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
38秒前
lh完成签到 ,获得积分10
38秒前
炼丹炉完成签到,获得积分10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666486
求助须知:如何正确求助?哪些是违规求助? 3225487
关于积分的说明 9763273
捐赠科研通 2935314
什么是DOI,文献DOI怎么找? 1607634
邀请新用户注册赠送积分活动 759278
科研通“疑难数据库(出版商)”最低求助积分说明 735197