卷积神经网络
人工智能
计算机科学
模式识别(心理学)
水准点(测量)
元数据
上下文图像分类
人工神经网络
特征提取
模态(人机交互)
深度学习
机器学习
图像(数学)
大地测量学
操作系统
地理
作者
Jeremy Kawahara,Sara Daneshvar,Giuseppe Argenziano,Ghassan Hamarneh
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2018-04-09
卷期号:23 (2): 538-546
被引量:335
标识
DOI:10.1109/jbhi.2018.2824327
摘要
We propose a multitask deep convolutional neural network, trained on multimodal data (clinical and dermoscopic images, and patient metadata), to classify the 7-point melanoma checklist criteria and perform skin lesion diagnosis. Our neural network is trained using several multitask loss functions, where each loss considers different combinations of the input modalities, which allows our model to be robust to missing data at inference time. Our final model classifies the 7-point checklist and skin condition diagnosis, produces multimodal feature vectors suitable for image retrieval, and localizes clinically discriminant regions. We benchmark our approach using 1011 lesion cases, and report comprehensive results over all 7-point criteria and diagnosis. We also make our dataset (images and metadata) publicly available online at http://derm.cs.sfu.ca.
科研通智能强力驱动
Strongly Powered by AbleSci AI