亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nitrate Hysteresis as a Tool for Revealing Storm‐Event Dynamics and Improving Water Quality Model Performance

环境科学 水质 磁滞 硝酸盐 水文学(农业) 土壤科学 工程类 生态学 岩土工程 物理 量子力学 生物
作者
Admin Husic,James F. Fox,Evan Clare,Tyler Mahoney,Amirreza Zarnaghsh
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:10
标识
DOI:10.1029/2022wr033180
摘要

Abstract Understanding the physics of nitrate contamination in surface and subsurface water is vital for mitigating downstream water quality impairment. Though high frequency sensor data have become readily available and computational models more accessible, the integration of these two methods for improved prediction is underdeveloped. The objective of this study was to utilize high‐frequency data to advance our understanding and model representation of nitrate transport for an agricultural karst spring in Kentucky, USA. We collected 2‐years of 15‐min nitrate and specific conductance data and analyzed source‐timing dynamics across dozens of events to develop a conceptual model for nitrate hysteresis in karst. Thereafter, we used the sensing data, specifically discharge‐concentration indices, to constrain modeled nitrate prediction bounds as well as the uncertainty of hydrologic and nitrogen processes, such as soil percolation and biogeochemical transformation. Observed nitrate hysteresis behavior at the spring was complex and included clockwise ( n = 11), counterclockwise ( n = 13), and figure‐eight ( n = 10) shapes, which contrasts with surface systems that are often dominated by a single hysteresis shape. Sensing results highlight the importance of antecedent connectivity to nitrate‐rich storages in determining the timing of nitrate delivery to the spring. After integrating hysteresis analysis into our numerical model evaluation, simulated nitrate prediction bounds were reduced by 43 ± 12% and parameter uncertainty by 36 ± 20%. Taken together, this study suggests that discharge‐concentration indices derived from high‐frequency sensor data can be successfully integrated into numerical models to improve process representation and reduce modeled uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ayang完成签到,获得积分10
3秒前
科研通AI2S应助没有昵称采纳,获得10
4秒前
Ayang发布了新的文献求助50
6秒前
李爱国应助背后晓兰采纳,获得10
7秒前
18秒前
miaomiao123完成签到,获得积分10
19秒前
活力的鹏笑完成签到 ,获得积分10
31秒前
浮游应助大大大采纳,获得20
37秒前
zmx完成签到 ,获得积分0
40秒前
浮游应助边缘人采纳,获得10
40秒前
SciGPT应助炙热的灵薇采纳,获得10
44秒前
zb完成签到,获得积分10
48秒前
失眠太阳完成签到,获得积分10
50秒前
54秒前
ZX发布了新的文献求助10
57秒前
1分钟前
tobino1完成签到,获得积分10
1分钟前
1分钟前
1分钟前
愤怒的小鸽子完成签到,获得积分10
1分钟前
1分钟前
Yuan完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
tt发布了新的文献求助10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
hugeng完成签到,获得积分10
1分钟前
tt完成签到,获得积分10
1分钟前
1分钟前
ZX发布了新的文献求助10
1分钟前
火星上的山河完成签到 ,获得积分10
1分钟前
搜集达人应助Zyc采纳,获得10
1分钟前
大模型应助追寻跳跳糖采纳,获得10
1分钟前
橙橙橙橙完成签到 ,获得积分10
1分钟前
深情安青应助wop111采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323514
求助须知:如何正确求助?哪些是违规求助? 4464801
关于积分的说明 13893602
捐赠科研通 4356293
什么是DOI,文献DOI怎么找? 2392731
邀请新用户注册赠送积分活动 1386283
关于科研通互助平台的介绍 1356264