Nitrate Hysteresis as a Tool for Revealing Storm‐Event Dynamics and Improving Water Quality Model Performance

环境科学 水质 磁滞 硝酸盐 水文学(农业) 土壤科学 工程类 生态学 岩土工程 物理 量子力学 生物
作者
Admin Husic,James F. Fox,Evan Clare,Tyler Mahoney,Amirreza Zarnaghsh
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:10
标识
DOI:10.1029/2022wr033180
摘要

Abstract Understanding the physics of nitrate contamination in surface and subsurface water is vital for mitigating downstream water quality impairment. Though high frequency sensor data have become readily available and computational models more accessible, the integration of these two methods for improved prediction is underdeveloped. The objective of this study was to utilize high‐frequency data to advance our understanding and model representation of nitrate transport for an agricultural karst spring in Kentucky, USA. We collected 2‐years of 15‐min nitrate and specific conductance data and analyzed source‐timing dynamics across dozens of events to develop a conceptual model for nitrate hysteresis in karst. Thereafter, we used the sensing data, specifically discharge‐concentration indices, to constrain modeled nitrate prediction bounds as well as the uncertainty of hydrologic and nitrogen processes, such as soil percolation and biogeochemical transformation. Observed nitrate hysteresis behavior at the spring was complex and included clockwise ( n = 11), counterclockwise ( n = 13), and figure‐eight ( n = 10) shapes, which contrasts with surface systems that are often dominated by a single hysteresis shape. Sensing results highlight the importance of antecedent connectivity to nitrate‐rich storages in determining the timing of nitrate delivery to the spring. After integrating hysteresis analysis into our numerical model evaluation, simulated nitrate prediction bounds were reduced by 43 ± 12% and parameter uncertainty by 36 ± 20%. Taken together, this study suggests that discharge‐concentration indices derived from high‐frequency sensor data can be successfully integrated into numerical models to improve process representation and reduce modeled uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
澳澳完成签到,获得积分10
2秒前
2秒前
善学以致用应助纯真抽屉采纳,获得10
3秒前
3秒前
笑笑发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
Hello应助cora采纳,获得10
6秒前
汉唐精彩完成签到,获得积分10
7秒前
7秒前
8秒前
田茂青完成签到,获得积分10
8秒前
damian发布了新的文献求助30
8秒前
8秒前
聪明芒果完成签到,获得积分10
8秒前
Vvvvvvv应助虫二先生采纳,获得10
8秒前
西大研究生完成签到 ,获得积分10
8秒前
9秒前
9秒前
呆呆完成签到,获得积分10
9秒前
左一酱完成签到 ,获得积分10
10秒前
平淡南霜发布了新的文献求助10
10秒前
Sweet关注了科研通微信公众号
10秒前
10秒前
赘婿应助wangfu采纳,获得10
11秒前
11秒前
11秒前
pipge完成签到,获得积分20
11秒前
12秒前
澳澳发布了新的文献求助10
12秒前
13秒前
清脆的映天完成签到,获得积分10
13秒前
yl驳回了sweetbearm应助
13秒前
隐形曼青应助2鱼采纳,获得10
13秒前
通~发布了新的文献求助10
13秒前
香蕉觅云应助junzilan采纳,获得10
14秒前
张老涵发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794