Nitrate Hysteresis as a Tool for Revealing Storm‐Event Dynamics and Improving Water Quality Model Performance

环境科学 水质 磁滞 硝酸盐 水文学(农业) 土壤科学 工程类 生态学 岩土工程 物理 量子力学 生物
作者
Admin Husic,James F. Fox,Evan Clare,Tyler Mahoney,Amirreza Zarnaghsh
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:10
标识
DOI:10.1029/2022wr033180
摘要

Abstract Understanding the physics of nitrate contamination in surface and subsurface water is vital for mitigating downstream water quality impairment. Though high frequency sensor data have become readily available and computational models more accessible, the integration of these two methods for improved prediction is underdeveloped. The objective of this study was to utilize high‐frequency data to advance our understanding and model representation of nitrate transport for an agricultural karst spring in Kentucky, USA. We collected 2‐years of 15‐min nitrate and specific conductance data and analyzed source‐timing dynamics across dozens of events to develop a conceptual model for nitrate hysteresis in karst. Thereafter, we used the sensing data, specifically discharge‐concentration indices, to constrain modeled nitrate prediction bounds as well as the uncertainty of hydrologic and nitrogen processes, such as soil percolation and biogeochemical transformation. Observed nitrate hysteresis behavior at the spring was complex and included clockwise ( n = 11), counterclockwise ( n = 13), and figure‐eight ( n = 10) shapes, which contrasts with surface systems that are often dominated by a single hysteresis shape. Sensing results highlight the importance of antecedent connectivity to nitrate‐rich storages in determining the timing of nitrate delivery to the spring. After integrating hysteresis analysis into our numerical model evaluation, simulated nitrate prediction bounds were reduced by 43 ± 12% and parameter uncertainty by 36 ± 20%. Taken together, this study suggests that discharge‐concentration indices derived from high‐frequency sensor data can be successfully integrated into numerical models to improve process representation and reduce modeled uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Orion完成签到,获得积分10
2秒前
3秒前
5秒前
李爱国应助arzu采纳,获得10
5秒前
5秒前
6秒前
852应助阔达的曼凡采纳,获得10
7秒前
阿枫发布了新的文献求助30
9秒前
9秒前
10秒前
顺顺尼发布了新的文献求助10
11秒前
12秒前
12秒前
清爽夜雪完成签到,获得积分10
12秒前
12秒前
仄咅发布了新的文献求助10
15秒前
16秒前
微微发布了新的文献求助10
17秒前
zjspidany应助舒心魂幽采纳,获得20
17秒前
18秒前
董董完成签到,获得积分20
18秒前
19秒前
不二完成签到,获得积分10
20秒前
20秒前
advance完成签到,获得积分10
20秒前
22秒前
kk完成签到,获得积分10
22秒前
科研通AI2S应助董董采纳,获得10
22秒前
jxas完成签到,获得积分10
24秒前
Ftucyctucutct完成签到,获得积分10
24秒前
微微完成签到,获得积分10
26秒前
26秒前
29秒前
Nacy完成签到,获得积分10
34秒前
星辰大海应助Loooong采纳,获得10
34秒前
36秒前
yyymmma应助科研通管家采纳,获得10
36秒前
科目三应助科研通管家采纳,获得10
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265133
求助须知:如何正确求助?哪些是违规求助? 2905098
关于积分的说明 8332703
捐赠科研通 2575523
什么是DOI,文献DOI怎么找? 1399849
科研通“疑难数据库(出版商)”最低求助积分说明 654595
邀请新用户注册赠送积分活动 633449