Nitrate Hysteresis as a Tool for Revealing Storm‐Event Dynamics and Improving Water Quality Model Performance

环境科学 水质 磁滞 硝酸盐 水文学(农业) 土壤科学 工程类 生态学 岩土工程 物理 量子力学 生物
作者
Admin Husic,James F. Fox,Evan Clare,Tyler Mahoney,Amirreza Zarnaghsh
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:10
标识
DOI:10.1029/2022wr033180
摘要

Abstract Understanding the physics of nitrate contamination in surface and subsurface water is vital for mitigating downstream water quality impairment. Though high frequency sensor data have become readily available and computational models more accessible, the integration of these two methods for improved prediction is underdeveloped. The objective of this study was to utilize high‐frequency data to advance our understanding and model representation of nitrate transport for an agricultural karst spring in Kentucky, USA. We collected 2‐years of 15‐min nitrate and specific conductance data and analyzed source‐timing dynamics across dozens of events to develop a conceptual model for nitrate hysteresis in karst. Thereafter, we used the sensing data, specifically discharge‐concentration indices, to constrain modeled nitrate prediction bounds as well as the uncertainty of hydrologic and nitrogen processes, such as soil percolation and biogeochemical transformation. Observed nitrate hysteresis behavior at the spring was complex and included clockwise ( n = 11), counterclockwise ( n = 13), and figure‐eight ( n = 10) shapes, which contrasts with surface systems that are often dominated by a single hysteresis shape. Sensing results highlight the importance of antecedent connectivity to nitrate‐rich storages in determining the timing of nitrate delivery to the spring. After integrating hysteresis analysis into our numerical model evaluation, simulated nitrate prediction bounds were reduced by 43 ± 12% and parameter uncertainty by 36 ± 20%. Taken together, this study suggests that discharge‐concentration indices derived from high‐frequency sensor data can be successfully integrated into numerical models to improve process representation and reduce modeled uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Sunnut采纳,获得10
刚刚
我是老大应助Jiaowen采纳,获得10
1秒前
1秒前
2秒前
完美世界应助莫茹采纳,获得10
3秒前
小红帽完成签到,获得积分10
3秒前
4秒前
鱼干发布了新的文献求助10
4秒前
5秒前
上官若男应助ZM采纳,获得10
6秒前
马鑫燚完成签到,获得积分20
7秒前
7秒前
9秒前
shirley发布了新的文献求助30
9秒前
水上书完成签到,获得积分10
10秒前
12秒前
一种信仰发布了新的文献求助10
12秒前
积极的誉发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
博修发布了新的文献求助30
18秒前
Jiaowen发布了新的文献求助10
18秒前
ZM发布了新的文献求助10
18秒前
淡淡的白羊完成签到 ,获得积分10
19秒前
19秒前
不羁的风完成签到 ,获得积分10
19秒前
科研通AI2S应助shirley采纳,获得10
20秒前
Khalil完成签到 ,获得积分20
23秒前
Jasper应助Xinli采纳,获得10
23秒前
24秒前
27秒前
ernongchang完成签到 ,获得积分10
28秒前
28秒前
28秒前
Hello应助m李采纳,获得10
30秒前
Khalil关注了科研通微信公众号
31秒前
31秒前
32秒前
魔芋不爽完成签到,获得积分10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962898
求助须知:如何正确求助?哪些是违规求助? 3508858
关于积分的说明 11143641
捐赠科研通 3241777
什么是DOI,文献DOI怎么找? 1791659
邀请新用户注册赠送积分活动 873063
科研通“疑难数据库(出版商)”最低求助积分说明 803579