Analysis on the caged structure of polyhedral oligomeric dodecaphenyl silsesquioxane and its condensation mechanism

倍半硅氧烷 化学 二聚体 四聚体 聚合 冷凝 结晶学 聚合度 热稳定性 计算化学 高分子化学 聚合物 有机化学 热力学 物理
作者
Donglin Zhang,Huanjiao Jenny Zhou,Rongjie Yang,Weiwei Zhang,Lamei Li
出处
期刊:Journal of Molecular Structure [Elsevier]
卷期号:1280: 135024-135024 被引量:1
标识
DOI:10.1016/j.molstruc.2023.135024
摘要

Polyhedral oligomeric dodecaphenyl silsesquioxane (DPS) and octaphenyl silsesquioxane (OPS) are two kinds of caged inorganic-organic hybrids and high thermal stable compounds. Concerning the caged structure of DPS, there remain some inconformity among researchers’ conclusions. Some researchers hold that the structure is in the shape of a gem containing 4 tetragons and 4 pentagons, while other articles consider the structure to be a cyclic ladder with 6 tetragons and 2 hexagons. In this paper, the correct structure of DPS is found to be gem‑like, deduced by detailed NMR spectra analysis and Euler's formula calculation, and proved by a single crystal diffraction pattern. A simulation calculation by Materials Studio (MS) proves that the gem‑like structure (Etotal=41.57 kcal·mol-1) is more stable than the cyclic ladder-like one (Etotal=43.37 kcal·mol-1). For the DPS and OPS, the distances between adjacent phenyl groups are considered to influence the chemical shifts of H, C and Si atoms in NMR due to shielding effects, deshielding effects and electron densities. The cyclic tetramer with Etotal=20.40kcal·mol-1 is proved to be the stable cyclic oligomeric phenyl silsesquioxanes with the smallest polymerization degree by the simulations. The linear dimer with Etotal=14.49 kcal·mol-1 is proved to be the stable linear oligomeric silsesquioxanes with the smallest polymerization degree. A condensation mechanism of DPS and OPS is proposed based on the simulation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhanlonglsj发布了新的文献求助10
刚刚
刚刚
芍药完成签到,获得积分10
刚刚
Yogita完成签到,获得积分10
1秒前
DoctorYan完成签到,获得积分10
1秒前
Adler完成签到,获得积分10
1秒前
2秒前
坐宝马吃地瓜完成签到 ,获得积分10
2秒前
SciGPT应助Strike采纳,获得10
2秒前
自强不息完成签到,获得积分10
2秒前
3秒前
czq发布了新的文献求助30
3秒前
望春风完成签到,获得积分10
3秒前
3秒前
huangJP完成签到,获得积分10
4秒前
情怀应助Tira采纳,获得10
4秒前
王阳洋完成签到,获得积分10
4秒前
4秒前
5秒前
通~发布了新的文献求助10
5秒前
李爱国应助非常可爱采纳,获得20
5秒前
5秒前
6秒前
阿敏发布了新的文献求助10
7秒前
JamesPei应助小憩采纳,获得10
7秒前
jkhjkhj发布了新的文献求助10
7秒前
风中香之发布了新的文献求助30
7秒前
忍冬完成签到,获得积分10
8秒前
Zhong发布了新的文献求助10
9秒前
胡图图关注了科研通微信公众号
9秒前
爱吃泡芙发布了新的文献求助20
9秒前
xiuxiu_27发布了新的文献求助10
9秒前
小书包完成签到,获得积分10
10秒前
xxx发布了新的文献求助10
10秒前
直率的钢铁侠完成签到,获得积分10
10秒前
大模型应助Elaine采纳,获得10
11秒前
花痴的骁完成签到 ,获得积分10
11秒前
F冯发布了新的文献求助10
12秒前
干卿完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740