A novel machine learning approach on texture analysis for automatic breast microcalcification diagnosis classification of mammogram images

微钙化 人工智能 乳腺摄影术 乳腺癌 纹理(宇宙学) 计算机科学 模式识别(心理学) 计算机视觉 放射科 图像(数学) 医学 癌症 内科学
作者
Zahra Maghsoodzadeh Sarvestani,Jasem Jamali,Mehdi Taghizadeh,Mohammad Hosein Fatehi Dindarloo
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:149 (9): 6151-6170 被引量:8
标识
DOI:10.1007/s00432-023-04571-y
摘要

Screening programs use mammography as a diagnostic tool for the early detection of breast cancer. Mammogram enhancement is used to increase the local contrast of the mammogram so that the lesions are more visible in the advanced image. For accurate diagnosis in the early stage of breast cancer, the appearance of masses and microcalcification on the mammographic image are two important indicators. The objective of this study was to evaluate the feasibility of the automatic separation of images of breast tissue microcalcifications and also to evaluate its accuracy.The research was carried out by using two techniques of image enhancement and highlighting of breast tissue microcalcifications for the desired areas by regional ROI based on fuzzy system and also Gabor filtering method. After determining the clusters of breast tissue microcalcifications, the clusters are classified using the decision tree classification algorithm. Then, for segmentation, samples suspected of microcalcification are highlighted and masked, and in the last stage, tissue characteristics are extracted. Subsequently, with the help of an artificial neural network (ANN), determining the benign and malignant types of segmented ROI clusters was accomplished. The proposed system is trained with a Digital Database for Screening Mammography (DDSM) developed by the University of South Florida, USA, and the simulations are performed under MATLAB software and the results are compared with previous work.The results of this training performed under this work show an accuracy of 93% and an improvement of sensitivity above 95%.The result indicates that the proposed approach can be applied to ensure breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啛啛喳喳发布了新的文献求助30
3秒前
地球观光客完成签到,获得积分10
5秒前
FashionBoy应助天问采纳,获得10
5秒前
airvince应助aa采纳,获得20
6秒前
卿言完成签到 ,获得积分10
7秒前
8秒前
qianyue发布了新的文献求助10
8秒前
Coco发布了新的文献求助10
10秒前
10秒前
11秒前
明年发布了新的文献求助10
11秒前
林建峰发布了新的文献求助10
12秒前
Flechozo完成签到,获得积分20
14秒前
14秒前
忆年慧逝发布了新的文献求助10
14秒前
kilig完成签到,获得积分10
15秒前
WU完成签到,获得积分10
15秒前
李健应助Blueberry采纳,获得10
16秒前
JMCA发布了新的文献求助10
17秒前
自然麦片完成签到,获得积分20
19秒前
19秒前
WU发布了新的文献求助10
19秒前
缓慢海亦发布了新的文献求助10
19秒前
深情安青应助GX2023采纳,获得10
21秒前
星辰大海应助xnnnn采纳,获得10
22秒前
明年完成签到,获得积分10
23秒前
1231发布了新的文献求助10
24秒前
郑鹏飞发布了新的文献求助10
24秒前
gsj完成签到 ,获得积分10
24秒前
JamesPei应助小谢采纳,获得10
25秒前
南吕完成签到,获得积分10
25秒前
26秒前
隐形曼青应助Coco采纳,获得10
27秒前
mtw完成签到,获得积分10
27秒前
自由慕青应助JMCA采纳,获得10
27秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
28秒前
YJL完成签到 ,获得积分10
28秒前
money完成签到 ,获得积分10
28秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748682
求助须知:如何正确求助?哪些是违规求助? 3291768
关于积分的说明 10074325
捐赠科研通 3007520
什么是DOI,文献DOI怎么找? 1651627
邀请新用户注册赠送积分活动 786613
科研通“疑难数据库(出版商)”最低求助积分说明 751770