亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new sampling methodology for defining heterogeneous subsets of samples for training image segmentation algorithms

计算机科学 采样(信号处理) 分割 图像(数学) 培训(气象学) 人工智能 图像分割 模式识别(心理学) 尺度空间分割 算法 计算机视觉 地理 滤波器(信号处理) 气象学
作者
Matheus Viana da Silva,Natália de Carvalho Santos,Baptiste Lacoste,César H. Comin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2301.04517
摘要

Creating a dataset for training supervised machine learning algorithms can be a demanding task. This is especially true for medical image segmentation since one or more specialists are usually required for image annotation, and creating ground truth labels for just a single image can take up to several hours. In addition, it is paramount that the annotated samples represent well the different conditions that might affect the imaged tissues as well as possible changes in the image acquisition process. This can only be achieved by considering samples that are typical in the dataset as well as atypical, or even outlier, samples. We introduce VessMAP, a heterogeneous blood vessel segmentation dataset acquired by carefully sampling relevant images from a larger non-annotated dataset. A methodology was developed to select both prototypical and atypical samples from the base dataset, thus defining an assorted set of images that can be used for measuring the performance of segmentation algorithms on samples that are highly distinct from each other. To demonstrate the potential of the new dataset, we show that the validation performance of a neural network changes significantly depending on the splits used for training the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
量子星尘发布了新的文献求助10
17秒前
Magali发布了新的文献求助30
29秒前
量子星尘发布了新的文献求助10
33秒前
47秒前
hihi发布了新的文献求助10
52秒前
量子星尘发布了新的文献求助10
52秒前
智慧金刚完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
blenx发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
陶醉的手套完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
幽默盼雁完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
dahai发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
dahai完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743979
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605221
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503