Demystifying neuroblastoma malignancy through fractal dimension, entropy, and lacunarity

神经母细胞瘤 神经节细胞瘤 缺陷 神经节神经母细胞瘤 恶性肿瘤 医学 放射科 接收机工作特性 分形维数 人工智能 肿瘤科 分形 病理 计算机科学 内科学 数学 生物 数学分析 细胞培养 遗传学
作者
Irene Donato,Kiran Kumar Velpula,Andrew J. Tsung,Jack A. Tuszyński,Consolato Sergi
出处
期刊:Tumori Journal [SAGE]
卷期号:109 (4): 370-378 被引量:5
标识
DOI:10.1177/03008916221146208
摘要

Neuroblastoma is a pediatric solid tumor with a prognosis associated with histology and age of the patient, which are the parameters of the well-established current classification (Shimada classification). Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor. Therefore, there is a continuous need to stratify the children suffering from this tumor. A mathematical and computational approach is proposed to enable automatic and precise cancer diagnosis on the histological slide.We targeted the complexity of neuroblastoma by calculating its image entropy (S), fractal dimension (FD), and lacunarity (λ) in a combined mathematical code. First, we tested the proposed method for patient-derived glioma images. It allowed distinguishing between normal brain tissue, grade II, and grade III glioma, which harbor different outcomes.In neuroblastoma, our analysis of image's FD, S, and λ combined with a machine learning algorithm automatically predicted tumor malignancy with a receiver operating characteristic curve of 0.82. FD, S, and λ distinguish between neuroblastoma and ganglioneuroma, but they only partially differentiate between the normal samples and the other classes. Ganglioneuroma, the most differentiated form, and poorly-differentiated neuroblastoma display different values of FD, S, and λ.FD, S, and λ of imaging recognize groups in neuroblastic tumors. We suggest that future studies including these features may challenge the current Shimada classification of neuroblastoma with categories of favorable and unfavorable histology. It is expected that this methodology could trigger multicenter studies and potentially find practical use in the clinical setting of children's hospitals worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助绿光之城采纳,获得10
1秒前
GINNY发布了新的文献求助20
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
英姑应助煜琪采纳,获得10
3秒前
3秒前
斯文败类应助深情新之采纳,获得10
4秒前
阳光沛柔发布了新的文献求助10
5秒前
略略略发布了新的文献求助10
6秒前
852应助fishway采纳,获得10
7秒前
blue发布了新的文献求助10
8秒前
大气寻真发布了新的文献求助10
8秒前
8秒前
善良的樱完成签到 ,获得积分10
9秒前
尊敬的莹完成签到,获得积分10
10秒前
九方完成签到,获得积分10
10秒前
12秒前
唠叨的逍遥关注了科研通微信公众号
12秒前
cc发布了新的文献求助10
14秒前
14秒前
再见不难完成签到,获得积分10
15秒前
狗十七发布了新的文献求助10
16秒前
16秒前
xuuuuumin完成签到,获得积分10
17秒前
dzdznb完成签到,获得积分20
17秒前
飞飞完成签到,获得积分10
17秒前
WB87应助浆酱子采纳,获得10
17秒前
Gabriel发布了新的文献求助10
18秒前
yu发布了新的文献求助10
18秒前
fishway发布了新的文献求助10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430823
求助须知:如何正确求助?哪些是违规求助? 4543941
关于积分的说明 14189780
捐赠科研通 4462379
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437962
关于科研通互助平台的介绍 1414553