Demystifying neuroblastoma malignancy through fractal dimension, entropy, and lacunarity

神经母细胞瘤 神经节细胞瘤 缺陷 神经节神经母细胞瘤 恶性肿瘤 医学 放射科 接收机工作特性 分形维数 人工智能 肿瘤科 分形 病理 计算机科学 内科学 数学 生物 数学分析 细胞培养 遗传学
作者
Irene Donato,Kiran Kumar Velpula,Andrew J. Tsung,Jack A. Tuszyński,Consolato Sergi
出处
期刊:Tumori Journal [SAGE]
卷期号:109 (4): 370-378 被引量:5
标识
DOI:10.1177/03008916221146208
摘要

Neuroblastoma is a pediatric solid tumor with a prognosis associated with histology and age of the patient, which are the parameters of the well-established current classification (Shimada classification). Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor. Therefore, there is a continuous need to stratify the children suffering from this tumor. A mathematical and computational approach is proposed to enable automatic and precise cancer diagnosis on the histological slide.We targeted the complexity of neuroblastoma by calculating its image entropy (S), fractal dimension (FD), and lacunarity (λ) in a combined mathematical code. First, we tested the proposed method for patient-derived glioma images. It allowed distinguishing between normal brain tissue, grade II, and grade III glioma, which harbor different outcomes.In neuroblastoma, our analysis of image's FD, S, and λ combined with a machine learning algorithm automatically predicted tumor malignancy with a receiver operating characteristic curve of 0.82. FD, S, and λ distinguish between neuroblastoma and ganglioneuroma, but they only partially differentiate between the normal samples and the other classes. Ganglioneuroma, the most differentiated form, and poorly-differentiated neuroblastoma display different values of FD, S, and λ.FD, S, and λ of imaging recognize groups in neuroblastic tumors. We suggest that future studies including these features may challenge the current Shimada classification of neuroblastoma with categories of favorable and unfavorable histology. It is expected that this methodology could trigger multicenter studies and potentially find practical use in the clinical setting of children's hospitals worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
28551发布了新的文献求助10
刚刚
传奇3应助RK_404采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
奇趣糖完成签到,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
小杭76应助Yuki采纳,获得10
2秒前
科研通AI6应助快乐的菠萝采纳,获得10
2秒前
淡淡乐巧发布了新的文献求助10
2秒前
朱伟虎发布了新的文献求助30
2秒前
danruolan完成签到,获得积分10
3秒前
3秒前
4秒前
唠叨的富完成签到,获得积分10
4秒前
九丢发布了新的文献求助10
5秒前
AN完成签到,获得积分10
5秒前
5秒前
Nox完成签到,获得积分10
6秒前
开朗香旋发布了新的文献求助10
7秒前
深情安青应助Sean采纳,获得10
8秒前
hang完成签到,获得积分10
8秒前
天123发布了新的文献求助10
8秒前
万能图书馆应助夜轩岚采纳,获得10
9秒前
科研通AI6应助郑盼秋采纳,获得10
9秒前
小屁孩完成签到,获得积分10
10秒前
云落落发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
bae发布了新的文献求助10
13秒前
小吴发布了新的文献求助10
13秒前
哎哟可爱完成签到,获得积分10
13秒前
13秒前
Jasper应助liu星雨采纳,获得10
14秒前
思源应助123采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434796
求助须知:如何正确求助?哪些是违规求助? 4547135
关于积分的说明 14206191
捐赠科研通 4467229
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439403
关于科研通互助平台的介绍 1416096