Demystifying neuroblastoma malignancy through fractal dimension, entropy, and lacunarity

神经母细胞瘤 神经节细胞瘤 缺陷 神经节神经母细胞瘤 恶性肿瘤 医学 放射科 接收机工作特性 分形维数 人工智能 肿瘤科 分形 病理 计算机科学 内科学 数学 生物 数学分析 细胞培养 遗传学
作者
Irene Donato,Kiran Kumar Velpula,Andrew J. Tsung,Jack A. Tuszyński,Consolato Sergi
出处
期刊:Tumori Journal [SAGE Publishing]
卷期号:109 (4): 370-378 被引量:5
标识
DOI:10.1177/03008916221146208
摘要

Neuroblastoma is a pediatric solid tumor with a prognosis associated with histology and age of the patient, which are the parameters of the well-established current classification (Shimada classification). Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor. Therefore, there is a continuous need to stratify the children suffering from this tumor. A mathematical and computational approach is proposed to enable automatic and precise cancer diagnosis on the histological slide.We targeted the complexity of neuroblastoma by calculating its image entropy (S), fractal dimension (FD), and lacunarity (λ) in a combined mathematical code. First, we tested the proposed method for patient-derived glioma images. It allowed distinguishing between normal brain tissue, grade II, and grade III glioma, which harbor different outcomes.In neuroblastoma, our analysis of image's FD, S, and λ combined with a machine learning algorithm automatically predicted tumor malignancy with a receiver operating characteristic curve of 0.82. FD, S, and λ distinguish between neuroblastoma and ganglioneuroma, but they only partially differentiate between the normal samples and the other classes. Ganglioneuroma, the most differentiated form, and poorly-differentiated neuroblastoma display different values of FD, S, and λ.FD, S, and λ of imaging recognize groups in neuroblastic tumors. We suggest that future studies including these features may challenge the current Shimada classification of neuroblastoma with categories of favorable and unfavorable histology. It is expected that this methodology could trigger multicenter studies and potentially find practical use in the clinical setting of children's hospitals worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助shane采纳,获得10
刚刚
嘀嘀啷个浪里浪关注了科研通微信公众号
刚刚
李健的小迷弟应助lkk采纳,获得10
刚刚
领导范儿应助外向钢铁侠采纳,获得10
1秒前
呵呵咯咯哒完成签到,获得积分10
1秒前
1秒前
汪汪发布了新的文献求助10
2秒前
2秒前
Hello应助球球采纳,获得10
3秒前
3秒前
4秒前
4秒前
摸鱼ing完成签到,获得积分10
4秒前
4秒前
苞大米完成签到,获得积分10
5秒前
huliang关注了科研通微信公众号
5秒前
科目三应助稀饭采纳,获得10
5秒前
pluto应助打死不穿秋裤采纳,获得10
6秒前
6秒前
科研通AI6应助spaghetti采纳,获得10
6秒前
SciGPT应助lucky采纳,获得10
6秒前
研友_LNMPD8发布了新的文献求助10
6秒前
冰蓝色的忧伤完成签到,获得积分10
7秒前
ccm发布了新的文献求助10
8秒前
汪汪完成签到,获得积分10
8秒前
张文正完成签到,获得积分10
8秒前
樱花关注了科研通微信公众号
8秒前
传奇3应助佳佳采纳,获得10
8秒前
浮游应助RORY采纳,获得30
9秒前
辛紫璇发布了新的文献求助10
9秒前
TJJ完成签到,获得积分10
9秒前
NIKI0807应助WW采纳,获得20
9秒前
张贵虎完成签到 ,获得积分10
10秒前
10秒前
云生发布了新的文献求助10
10秒前
疯狂的乌发布了新的文献求助10
10秒前
soga完成签到,获得积分10
10秒前
王小橘发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178730
求助须知:如何正确求助?哪些是违规求助? 4366927
关于积分的说明 13596516
捐赠科研通 4217333
什么是DOI,文献DOI怎么找? 2313035
邀请新用户注册赠送积分活动 1311858
关于科研通互助平台的介绍 1260148