Demystifying neuroblastoma malignancy through fractal dimension, entropy, and lacunarity

神经母细胞瘤 神经节细胞瘤 缺陷 神经节神经母细胞瘤 恶性肿瘤 医学 放射科 接收机工作特性 分形维数 人工智能 肿瘤科 分形 病理 计算机科学 内科学 数学 生物 数学分析 细胞培养 遗传学
作者
Irene Donato,Kiran Kumar Velpula,Andrew J. Tsung,Jack A. Tuszyński,Consolato Sergi
出处
期刊:Tumori Journal [SAGE]
卷期号:109 (4): 370-378 被引量:5
标识
DOI:10.1177/03008916221146208
摘要

Neuroblastoma is a pediatric solid tumor with a prognosis associated with histology and age of the patient, which are the parameters of the well-established current classification (Shimada classification). Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor. Therefore, there is a continuous need to stratify the children suffering from this tumor. A mathematical and computational approach is proposed to enable automatic and precise cancer diagnosis on the histological slide.We targeted the complexity of neuroblastoma by calculating its image entropy (S), fractal dimension (FD), and lacunarity (λ) in a combined mathematical code. First, we tested the proposed method for patient-derived glioma images. It allowed distinguishing between normal brain tissue, grade II, and grade III glioma, which harbor different outcomes.In neuroblastoma, our analysis of image's FD, S, and λ combined with a machine learning algorithm automatically predicted tumor malignancy with a receiver operating characteristic curve of 0.82. FD, S, and λ distinguish between neuroblastoma and ganglioneuroma, but they only partially differentiate between the normal samples and the other classes. Ganglioneuroma, the most differentiated form, and poorly-differentiated neuroblastoma display different values of FD, S, and λ.FD, S, and λ of imaging recognize groups in neuroblastic tumors. We suggest that future studies including these features may challenge the current Shimada classification of neuroblastoma with categories of favorable and unfavorable histology. It is expected that this methodology could trigger multicenter studies and potentially find practical use in the clinical setting of children's hospitals worldwide.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Re想开了关注了科研通微信公众号
刚刚
刚刚
石豪有发布了新的文献求助10
刚刚
蚊蚊爱读书应助jhh采纳,获得10
刚刚
1秒前
1秒前
1秒前
科研通AI6应助邱化兴采纳,获得10
2秒前
bkagyin应助Nomb1采纳,获得10
2秒前
Sandy完成签到,获得积分10
2秒前
3秒前
mmm在线求大佬相助完成签到,获得积分20
3秒前
QYF发布了新的文献求助10
3秒前
爱笑愚志发布了新的文献求助10
3秒前
耍酷的斑马完成签到,获得积分10
4秒前
鲤鱼山人发布了新的文献求助10
4秒前
4秒前
AAA专业修蹄车师傅完成签到,获得积分20
4秒前
殷勤的紫槐应助xyz采纳,获得200
4秒前
zzioo发布了新的文献求助10
4秒前
Ava应助王悦靓采纳,获得10
4秒前
4秒前
科研通AI6应助六碳烷采纳,获得10
4秒前
精灵夜雨完成签到 ,获得积分10
4秒前
WX完成签到,获得积分10
4秒前
5秒前
5秒前
yycyj1123发布了新的文献求助10
5秒前
5秒前
坚定的依琴完成签到,获得积分10
6秒前
6秒前
阿耒完成签到,获得积分10
6秒前
完美世界应助拼搏的飞薇采纳,获得10
6秒前
lixiaofan发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
谢灵运发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869