Demystifying neuroblastoma malignancy through fractal dimension, entropy, and lacunarity

神经母细胞瘤 神经节细胞瘤 缺陷 神经节神经母细胞瘤 恶性肿瘤 医学 放射科 接收机工作特性 分形维数 人工智能 肿瘤科 分形 病理 计算机科学 内科学 数学 生物 数学分析 细胞培养 遗传学
作者
Irene Donato,Kiran Kumar Velpula,Andrew J. Tsung,Jack A. Tuszyński,Consolato Sergi
出处
期刊:Tumori Journal [SAGE]
卷期号:109 (4): 370-378 被引量:5
标识
DOI:10.1177/03008916221146208
摘要

Neuroblastoma is a pediatric solid tumor with a prognosis associated with histology and age of the patient, which are the parameters of the well-established current classification (Shimada classification). Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor. Therefore, there is a continuous need to stratify the children suffering from this tumor. A mathematical and computational approach is proposed to enable automatic and precise cancer diagnosis on the histological slide.We targeted the complexity of neuroblastoma by calculating its image entropy (S), fractal dimension (FD), and lacunarity (λ) in a combined mathematical code. First, we tested the proposed method for patient-derived glioma images. It allowed distinguishing between normal brain tissue, grade II, and grade III glioma, which harbor different outcomes.In neuroblastoma, our analysis of image's FD, S, and λ combined with a machine learning algorithm automatically predicted tumor malignancy with a receiver operating characteristic curve of 0.82. FD, S, and λ distinguish between neuroblastoma and ganglioneuroma, but they only partially differentiate between the normal samples and the other classes. Ganglioneuroma, the most differentiated form, and poorly-differentiated neuroblastoma display different values of FD, S, and λ.FD, S, and λ of imaging recognize groups in neuroblastic tumors. We suggest that future studies including these features may challenge the current Shimada classification of neuroblastoma with categories of favorable and unfavorable histology. It is expected that this methodology could trigger multicenter studies and potentially find practical use in the clinical setting of children's hospitals worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮浮世世发布了新的文献求助10
1秒前
wujingshuai完成签到,获得积分10
1秒前
勤恳康乃馨完成签到,获得积分20
1秒前
跳跃的萧发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
脑洞疼应助高兴的海亦采纳,获得10
5秒前
Orange应助高兴的海亦采纳,获得10
5秒前
科研通AI2S应助高兴的海亦采纳,获得10
5秒前
桐桐应助高兴的海亦采纳,获得10
5秒前
情怀应助高兴的海亦采纳,获得10
5秒前
英姑应助高兴的海亦采纳,获得10
5秒前
田様应助高兴的海亦采纳,获得10
5秒前
zhy完成签到 ,获得积分10
5秒前
5秒前
李爱国应助高兴的海亦采纳,获得10
5秒前
义气翩跹发布了新的文献求助10
7秒前
7秒前
9秒前
云起龙都完成签到,获得积分10
9秒前
10秒前
11秒前
Hathaway发布了新的文献求助10
12秒前
lgg完成签到,获得积分10
12秒前
bkagyin应助米西米西采纳,获得10
12秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
13秒前
星辰大海应助高兴的海亦采纳,获得10
13秒前
慕青应助高兴的海亦采纳,获得10
13秒前
英姑应助高兴的海亦采纳,获得10
13秒前
大模型应助高兴的海亦采纳,获得10
13秒前
领导范儿应助高兴的海亦采纳,获得10
13秒前
思源应助高兴的海亦采纳,获得10
13秒前
汉堡包应助高兴的海亦采纳,获得10
13秒前
科目三应助高兴的海亦采纳,获得10
13秒前
SciGPT应助勤恳康乃馨采纳,获得30
13秒前
典雅的依云完成签到,获得积分10
13秒前
哈哈镜阿姐完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425064
求助须知:如何正确求助?哪些是违规求助? 4539194
关于积分的说明 14166180
捐赠科研通 4456338
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412494