An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 操作系统 工程类
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:2
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助称心乐枫采纳,获得10
刚刚
大力元霜完成签到,获得积分10
1秒前
1秒前
2秒前
帅哥发布了新的文献求助10
2秒前
gogogo完成签到 ,获得积分10
2秒前
疯狂的访文完成签到,获得积分20
2秒前
ling发布了新的文献求助10
2秒前
读书的丁丁完成签到,获得积分10
2秒前
SciGPT应助决战学术之巅采纳,获得10
3秒前
YXM1完成签到,获得积分10
3秒前
HHH完成签到,获得积分10
4秒前
den完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
彩虹小马发布了新的文献求助10
7秒前
卡卡光波完成签到,获得积分10
7秒前
8秒前
孤独雪柳发布了新的文献求助10
9秒前
醉熏的烤鸡完成签到,获得积分10
9秒前
NexusExplorer应助gxh采纳,获得10
9秒前
闪闪乘风完成签到 ,获得积分10
10秒前
10秒前
Stroeve完成签到,获得积分10
10秒前
踏云发布了新的文献求助10
10秒前
11秒前
YAN发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
Ivory完成签到,获得积分10
11秒前
科研通AI6应助行者无疆采纳,获得10
12秒前
ViVi完成签到,获得积分10
12秒前
LiQi发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
无极微光应助禾研采纳,获得20
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401