An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:22
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖善若发布了新的文献求助10
刚刚
刚刚
一区哥发布了新的文献求助30
刚刚
YUMI发布了新的文献求助10
刚刚
Q杰完成签到 ,获得积分10
刚刚
爱吃巧克力应助munire采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
深情安青应助xjc采纳,获得10
1秒前
小二郎应助幽意采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
Akim应助科研通管家采纳,获得30
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
yun发布了新的文献求助10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
大力帽子应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
小陈同学应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534