An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:22
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助wilsss采纳,获得20
刚刚
时迁完成签到 ,获得积分10
刚刚
CMUSK完成签到 ,获得积分10
3秒前
唐泽轩完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
一灯大师完成签到,获得积分10
4秒前
5秒前
天玄一刀完成签到,获得积分10
6秒前
震动的友琴完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
zisui发布了新的文献求助10
10秒前
白白不喽发布了新的文献求助10
10秒前
11秒前
怕黑三毒发布了新的文献求助10
12秒前
靓仔发布了新的文献求助10
12秒前
12秒前
wilsss完成签到,获得积分20
12秒前
完美世界应助一只呆果蝇采纳,获得10
13秒前
14秒前
14秒前
lokiyyy发布了新的文献求助10
14秒前
里已经完成签到,获得积分10
16秒前
唐泽轩关注了科研通微信公众号
17秒前
17秒前
18秒前
wuwa完成签到,获得积分10
18秒前
小鱼发布了新的文献求助10
18秒前
荞麦婷子发布了新的文献求助10
22秒前
23秒前
淼淼完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
A晨发布了新的文献求助10
24秒前
24秒前
完美世界应助哦萨尔采纳,获得10
26秒前
老福贵儿完成签到,获得积分0
26秒前
河道蟹完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679710
求助须知:如何正确求助?哪些是违规求助? 4993216
关于积分的说明 15170566
捐赠科研通 4839549
什么是DOI,文献DOI怎么找? 2593456
邀请新用户注册赠送积分活动 1546531
关于科研通互助平台的介绍 1504659