An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:22
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cc发布了新的文献求助10
1秒前
nn完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
LIU发布了新的文献求助10
2秒前
Juyy完成签到,获得积分10
2秒前
pct完成签到,获得积分10
3秒前
小李的李完成签到,获得积分10
3秒前
阿欢完成签到,获得积分10
3秒前
4秒前
4秒前
优秀的静白完成签到,获得积分20
4秒前
鲤鱼白玉发布了新的文献求助10
4秒前
酷波er应助机灵鱼采纳,获得10
5秒前
杨振发布了新的文献求助20
6秒前
儒雅致远发布了新的文献求助10
6秒前
yyy关闭了yyy文献求助
6秒前
wenzi发布了新的文献求助10
6秒前
6秒前
透明木头应助假面绅士采纳,获得10
7秒前
星辰大海应助阔达如柏采纳,获得10
7秒前
8秒前
ppx关注了科研通微信公众号
8秒前
Pan发布了新的文献求助10
8秒前
8秒前
8秒前
英俊的铭应助45654采纳,获得30
8秒前
谷晋羽完成签到,获得积分10
11秒前
11秒前
11秒前
11111完成签到,获得积分10
12秒前
樵栋琰发布了新的文献求助10
12秒前
David应助儒雅致远采纳,获得10
12秒前
12秒前
NexusExplorer应助儒雅致远采纳,获得10
12秒前
明月清风发布了新的文献求助10
12秒前
zhouxiaolin完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243