An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:22
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助小仙女采纳,获得10
刚刚
萧水白完成签到,获得积分10
1秒前
wan发布了新的文献求助10
3秒前
3秒前
小二郎应助qing采纳,获得10
6秒前
刘雪晴完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
8秒前
8秒前
11秒前
lemon发布了新的文献求助20
12秒前
12秒前
13秒前
俭朴果汁完成签到 ,获得积分10
14秒前
wan完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
合适的平安完成签到 ,获得积分10
16秒前
16秒前
zhang发布了新的文献求助10
17秒前
要减肥南霜完成签到 ,获得积分10
17秒前
小仙女发布了新的文献求助10
18秒前
pearlism完成签到,获得积分10
19秒前
李爱国应助清蒸鱼吖采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
词不达意应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
李明应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
Sea_U应助科研通管家采纳,获得10
20秒前
核桃应助科研通管家采纳,获得30
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
Ky_Mac应助科研通管家采纳,获得30
20秒前
20秒前
大个应助科研通管家采纳,获得10
20秒前
Aisaka应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742127
求助须知:如何正确求助?哪些是违规求助? 5406259
关于积分的说明 15344129
捐赠科研通 4883566
什么是DOI,文献DOI怎么找? 2625108
邀请新用户注册赠送积分活动 1573970
关于科研通互助平台的介绍 1530929