An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:2
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
着急的碧菡完成签到 ,获得积分10
1秒前
苏颜鱼发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
聪明灭绝发布了新的文献求助10
2秒前
Ehgnix完成签到,获得积分10
3秒前
sss发布了新的文献求助10
3秒前
3秒前
3秒前
SciGPT应助花小研采纳,获得10
4秒前
4秒前
晓晓鹤发布了新的文献求助10
4秒前
4秒前
5秒前
脑洞疼应助天行马采纳,获得10
5秒前
浮游应助了一采纳,获得10
5秒前
6秒前
Piki完成签到,获得积分10
6秒前
归一完成签到,获得积分10
6秒前
00发布了新的文献求助10
6秒前
鲜于元龙发布了新的文献求助10
6秒前
李逍遥完成签到,获得积分20
6秒前
苧晰发布了新的文献求助10
6秒前
7秒前
青岑发布了新的文献求助10
8秒前
七月发布了新的文献求助10
8秒前
GabyChen完成签到 ,获得积分10
9秒前
9秒前
daaqiu发布了新的文献求助30
10秒前
12秒前
12秒前
潇洒的平松完成签到,获得积分10
13秒前
英俊的铭应助个性的荆采纳,获得10
13秒前
14秒前
14秒前
StevenZhao完成签到,获得积分0
14秒前
15秒前
英俊的铭应助整齐醉冬采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636998
求助须知:如何正确求助?哪些是违规求助? 4742430
关于积分的说明 14997256
捐赠科研通 4795195
什么是DOI,文献DOI怎么找? 2561870
邀请新用户注册赠送积分活动 1521362
关于科研通互助平台的介绍 1481478