An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 操作系统 工程类
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:2
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eternity136完成签到,获得积分10
刚刚
1秒前
细心不评完成签到,获得积分10
2秒前
善学以致用应助ky888888采纳,获得10
2秒前
2秒前
宝宝巴士发布了新的文献求助10
3秒前
Cope发布了新的文献求助10
3秒前
侯筱涵发布了新的文献求助10
4秒前
4秒前
哆啦A榕发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
哈哈哈哈哈哈完成签到,获得积分10
5秒前
勤奋山晴完成签到,获得积分10
6秒前
YTTT发布了新的文献求助10
6秒前
领导范儿应助海峰荣采纳,获得10
6秒前
rachell完成签到,获得积分10
6秒前
eternity136发布了新的文献求助10
7秒前
幻天游发布了新的文献求助10
8秒前
Jasper应助trq1007采纳,获得10
9秒前
9秒前
10秒前
10秒前
英俊qiang完成签到 ,获得积分10
10秒前
壮观小懒虫完成签到 ,获得积分10
10秒前
浮游应助侯筱涵采纳,获得10
12秒前
我心永恒完成签到,获得积分10
12秒前
13秒前
13秒前
curry发布了新的文献求助10
14秒前
木棉完成签到,获得积分10
14秒前
14秒前
风风风发布了新的文献求助10
15秒前
水果完成签到,获得积分10
15秒前
宝宝巴士完成签到 ,获得积分20
15秒前
英姑应助mini采纳,获得10
15秒前
15秒前
传奇3应助机灵的冰珍采纳,获得10
16秒前
Edddddy发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152