An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 操作系统 工程类
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:2
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
俭朴的鹰完成签到 ,获得积分10
6秒前
xiongxiong完成签到 ,获得积分10
6秒前
dmj完成签到 ,获得积分20
7秒前
11秒前
daguan发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
17秒前
tangyangzju发布了新的文献求助20
17秒前
贼吖完成签到 ,获得积分10
19秒前
空谷幽兰完成签到 ,获得积分10
21秒前
23秒前
孟浩然完成签到 ,获得积分10
23秒前
YYY完成签到 ,获得积分10
24秒前
o我不是高手完成签到 ,获得积分10
26秒前
26秒前
懒懒大王发布了新的文献求助10
28秒前
你都至少信我八分吧完成签到 ,获得积分10
31秒前
34秒前
34秒前
JamesPei应助科研通管家采纳,获得10
37秒前
大个应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
老福贵儿应助科研通管家采纳,获得10
37秒前
老福贵儿应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
852应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
轨迹应助科研通管家采纳,获得100
37秒前
37秒前
CodeCraft应助科研通管家采纳,获得10
37秒前
Orange应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
量子星尘发布了新的文献求助10
39秒前
39秒前
Victor12发布了新的文献求助10
40秒前
冷艳的鞯发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652919
求助须知:如何正确求助?哪些是违规求助? 4788733
关于积分的说明 15062234
捐赠科研通 4811531
什么是DOI,文献DOI怎么找? 2573922
邀请新用户注册赠送积分活动 1529695
关于科研通互助平台的介绍 1488390