An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:22
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL完成签到,获得积分10
2秒前
2秒前
云朵儿发布了新的文献求助10
4秒前
xiaoma完成签到,获得积分10
4秒前
Tinker发布了新的文献求助10
4秒前
5秒前
Marciu33发布了新的文献求助30
5秒前
柔弱亦寒完成签到,获得积分10
6秒前
6秒前
孝择完成签到 ,获得积分10
7秒前
7秒前
快乐柴柴完成签到,获得积分20
7秒前
9秒前
yang完成签到,获得积分10
10秒前
SciGPT应助11采纳,获得10
10秒前
领导范儿应助侧耳倾听采纳,获得10
10秒前
完美世界应助侧耳倾听采纳,获得10
10秒前
情怀应助侧耳倾听采纳,获得10
10秒前
星辰大海应助时代精神法采纳,获得10
10秒前
汉堡包应助侧耳倾听采纳,获得10
11秒前
Owen应助侧耳倾听采纳,获得10
11秒前
情怀应助侧耳倾听采纳,获得10
11秒前
liaoliao的招牌头子完成签到,获得积分10
11秒前
情怀应助侧耳倾听采纳,获得10
11秒前
11秒前
聪明小太阳应助侧耳倾听采纳,获得10
11秒前
杨杨应助Yvoone采纳,获得10
11秒前
lkk完成签到,获得积分10
12秒前
Akim应助Duqianying采纳,获得10
12秒前
草莓布丁发布了新的文献求助10
12秒前
万能图书馆应助深情凝天采纳,获得10
13秒前
酷波er应助lily采纳,获得10
13秒前
Tinker完成签到,获得积分20
13秒前
Nicole发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
wyx完成签到,获得积分10
16秒前
chr发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762094
求助须知:如何正确求助?哪些是违规求助? 5533938
关于积分的说明 15401949
捐赠科研通 4898361
什么是DOI,文献DOI怎么找? 2634825
邀请新用户注册赠送积分活动 1582986
关于科研通互助平台的介绍 1538167