亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:22
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇毅前行发布了新的文献求助10
3秒前
没见云发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
科目三应助leemiii采纳,获得10
20秒前
平淡冷发布了新的文献求助10
25秒前
Akim应助Guozixin采纳,获得10
27秒前
勇毅前行完成签到,获得积分10
29秒前
33秒前
40秒前
liyang完成签到,获得积分20
43秒前
PP发布了新的文献求助10
45秒前
56秒前
1分钟前
Lee发布了新的文献求助10
1分钟前
踏实孤容发布了新的文献求助10
1分钟前
1分钟前
Hayat发布了新的文献求助30
1分钟前
CodeCraft应助小鱼采纳,获得10
1分钟前
Akim应助石榴汁的书采纳,获得10
1分钟前
1分钟前
1分钟前
Owen应助f0rest采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小鱼发布了新的文献求助10
1分钟前
1分钟前
秦时明月发布了新的文献求助10
1分钟前
1分钟前
yyyyy发布了新的文献求助10
1分钟前
星辰大海应助yyyyy采纳,获得10
2分钟前
2分钟前
2分钟前
华仔应助踏实孤容采纳,获得50
2分钟前
搜集达人应助石榴汁的书采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Hayat发布了新的文献求助30
2分钟前
小鱼发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755305
求助须知:如何正确求助?哪些是违规求助? 5493226
关于积分的说明 15381070
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632125
邀请新用户注册赠送积分活动 1579966
关于科研通互助平台的介绍 1535776