An active memristor based rate-coded spiking neural network

MNIST数据库 神经形态工程学 尖峰神经网络 计算机科学 记忆电阻器 人工神经网络 Python(编程语言) 人工智能 电子工程 工程类 操作系统
作者
Aabid Amin Fida,Farooq Ahmad Khanday,Sparsh Mittal
出处
期刊:Neurocomputing [Elsevier]
卷期号:533: 61-71 被引量:22
标识
DOI:10.1016/j.neucom.2023.02.038
摘要

Neuromorphic computing is a novel computing paradigm that aims to mimic the behavior of biological neural networks for efficiently solving complex problems. While CMOS based neurons and synapses have been developed, they are limited in their ability to demonstrate bio-realistic dynamics. This, coupled with the fact that a huge number of these individual devices are required to build neurons and synapses, limits the scaling and power efficiency of such systems. A viable answer to this problem is neuromemristive systems that are based on memristor devices. These devices exhibit physical behaviors that can be related to the bio-physical dynamics of synapses and neurons. In this paper, a rate-coded all memristive “spiking neural network” (SNN) is presented. The proposed SNN is built with an active memristor neuron based on vanadium dioxide (VO2) coupled with a non-volatile memristor synapse. The results are validated by first simulating spiking versions of two Boolean functions viz., AND and XOR gates in SPICE. With features extracted from the small neural nets, a large-scale 3-layer spiking neural network is then simulated in Python which yields a validation accuracy of 87% on the MNIST dataset of handwritten digits. One of the prime features of this work is the realization of the XOR function using a single neuron which is not possible without the use of 2-layers of neurons in traditional neural networks. Another significant contribution is the utilization of a gradient-based learning approach for online training of a large-scale SNN. For this, we use the inherent activation function (Sigmoid/ReLU) of the proposed neuron design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助DiJia采纳,获得10
1秒前
1秒前
1秒前
DrYang完成签到,获得积分10
1秒前
fenmiao发布了新的文献求助10
1秒前
云晓完成签到,获得积分10
2秒前
kbkyvuy完成签到,获得积分10
2秒前
香蕉海白完成签到 ,获得积分10
2秒前
enen发布了新的文献求助10
3秒前
3秒前
zzy完成签到,获得积分10
3秒前
路瑶瑶完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
Cker发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
君莫笑完成签到 ,获得积分10
7秒前
SoniaChan发布了新的文献求助10
7秒前
7秒前
ppzz1220发布了新的文献求助10
8秒前
科研通AI6.1应助jxt采纳,获得10
8秒前
裴增华发布了新的文献求助10
9秒前
9秒前
英俊的晓蓝完成签到 ,获得积分10
10秒前
10秒前
XD发布了新的文献求助10
11秒前
11秒前
洁净的鹏煊完成签到,获得积分20
11秒前
XRT发布了新的文献求助10
11秒前
乌拉拉啦啦啦完成签到 ,获得积分10
12秒前
华仔应助seashell采纳,获得10
13秒前
善学以致用应助丰富土豆采纳,获得10
13秒前
14秒前
14秒前
研友_VZG7GZ应助DiJia采纳,获得10
15秒前
16秒前
星辰大海应助自由自在采纳,获得10
16秒前
糯糯完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749293
求助须知:如何正确求助?哪些是违规求助? 5457273
关于积分的说明 15363115
捐赠科研通 4888714
什么是DOI,文献DOI怎么找? 2628675
邀请新用户注册赠送积分活动 1576972
关于科研通互助平台的介绍 1533693