Traffic State Estimation near Signalized Intersections

交叉口(航空) 运输工程 计算机科学 估计 服务水平 国家(计算机科学) 公路通行能力手册 同种类的 运筹学 工程类 系统工程 数学 算法 组合数学
作者
Himabindu Maripini,Abdhul Khadhir,Lelitha Vanajakshi
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:149 (5) 被引量:4
标识
DOI:10.1061/jtepbs.teeng-7239
摘要

The primary goal with which any transportation system is designed is to make efficient use of the available infrastructure to achieve better level of service (LoS). However, LoS is observed to be deteriorating on urban roads, especially near signalized intersections, primarily due to the suboptimal operation of traffic signals. To achieve optimal performance of traffic signals, knowledge about the traffic states prevalent in the vicinity of the intersection is essential. Traffic states in general can be estimated at both macroscopic and microscopic level by employing various mathematical and data-driven approaches. However, obtaining these variables near the intersection is difficult and challenging under varying traffic conditions. This paper presents a systematic review of the state of the art in traffic state estimation (TSE) near signalized intersections both under homogeneous, lane-based, and heterogeneous less lane disciplined (HLLD) traffic conditions. This is expected to be a guide to traffic engineers, decision makers, and researchers aiming to gain pertinent knowledge about the sensors that can be used, data that needs to be collected, estimation methods that are suitable, and the intersection performance measures that need to be evaluated. The gaps in the current state of the art and future research directions are highlighted. In addition, insights on ways to address challenges pertaining to TSE near intersections under HLLD traffic conditions are also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年年年年发布了新的文献求助10
刚刚
哇呀呀发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
诚心的源智完成签到 ,获得积分10
2秒前
2秒前
2以李完成签到,获得积分10
2秒前
3秒前
3秒前
orixero应助Mr.Ren采纳,获得10
3秒前
3秒前
cqh完成签到 ,获得积分10
3秒前
4秒前
caixiayin发布了新的文献求助10
4秒前
5秒前
6秒前
Akim应助LY采纳,获得10
6秒前
小蘑菇应助刚刚好采纳,获得10
7秒前
hu发布了新的文献求助10
7秒前
wsh071117发布了新的文献求助10
7秒前
稚初完成签到,获得积分10
7秒前
fjkssadjk发布了新的文献求助10
8秒前
到灯塔去发布了新的文献求助10
9秒前
9秒前
10秒前
veblenadam发布了新的文献求助10
11秒前
单三毒完成签到,获得积分10
11秒前
12秒前
在水一方应助wuyt采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
搜集达人应助饶天源采纳,获得10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
sisiguai发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636