已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent vehicle pedestrian light (IVPL): A deep reinforcement learning approach for traffic signal control

交通信号灯 行人 强化学习 计算机科学 人工智能 模拟 控制(管理) 实时计算 运输工程 工程类
作者
Mobin Yazdani,Majid Sarvi,Saeed Asadi Bagloee,Neema Nassir,Jeff Price,Hossein Parineh
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:149: 103991-103991 被引量:32
标识
DOI:10.1016/j.trc.2022.103991
摘要

Deep reinforcement learning (RL) has been widely studied in traffic signal control. Despite the promising results that indicate the superiority of deep RL in terms of the quality of solution and optimality over fixed time signal control, the real-world multi-modal traffic flows, especially pedestrians, are not properly considered nor sufficiently investigated. This study presents a novel deep RL-based adaptive traffic signal model to control the vehicles and pedestrian flows by allocating an equitable green time to each, aiming at minimizing “total user delays” as opposed to “total vehicle delays” dominantly being used in the literature. Our proposed intelligent vehicle pedestrian light (IVPL) method can perform in the absence or presence of pedestrians, especially when there is jaywalking at the intersection, interrupting vehicle flows. To this end, an extended reward function is designed to capture delays due to vehicle-to-vehicle, vehicle-to-pedestrian, and pedestrian-to-pedestrian interactions, as well as red-light delays for vehicles and pedestrians. To evaluate the performance of IVPL, a microsimulation model of an intersection in city of Melbourne is used as a case-study. The real traffic signal parameters of an existing operation system (SCATS) are employed, and the simulation is calibrated using video-based camera data and loop detectors data collected at intersection. The experimental results demonstrate the superiority of the proposed model over fully actuated traffic signal, not only in terms of the quality of optimal solution, but also considering the fact that the proposed model can minimize the “total user delays”.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助鹿小九采纳,获得20
刚刚
minoricl发布了新的文献求助10
1秒前
科研通AI40应助tian采纳,获得10
1秒前
2秒前
Alita完成签到 ,获得积分10
2秒前
坡坡大王应助调皮发夹采纳,获得10
3秒前
蛋蛋发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
飞羽发布了新的文献求助10
9秒前
13秒前
烟花应助在明理摸鱼采纳,获得10
13秒前
lwg完成签到,获得积分10
14秒前
15秒前
滴滴滴滴发布了新的文献求助10
16秒前
17秒前
minoricl完成签到,获得积分10
17秒前
Tatw完成签到 ,获得积分10
18秒前
赘婿应助梦里格斗家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
欢呼洋葱应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
Akim应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助xlbn采纳,获得10
21秒前
22秒前
23秒前
24秒前
24秒前
科研通AI40应助Afterglow采纳,获得10
25秒前
骑驴找马完成签到,获得积分20
25秒前
27秒前
28秒前
29秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471228
求助须知:如何正确求助?哪些是违规求助? 3064103
关于积分的说明 9087449
捐赠科研通 2754912
什么是DOI,文献DOI怎么找? 1511625
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698404