Neglected acidity pitfall: boric acid-anchoring hole-selective contact for perovskite solar cells

硼酸 材料科学 钙钛矿(结构) 单层 锚固 吸附 氧化铟锡 化学工程 无机化学 图层(电子) 纳米技术 化学 有机化学 结构工程 工程类
作者
Huanxin Guo,Cong Liu,Honglong Hu,Shuo Zhang,Xiaoyu Ji,Xiaoming Cao,Zhijun Ning,Weihong Zhu,He Tian,Yongzhen Wu
出处
期刊:National Science Review [Oxford University Press]
卷期号:10 (5) 被引量:16
标识
DOI:10.1093/nsr/nwad057
摘要

The spontaneous formation of self-assembly monolayer (SAM) on various substrates represents an effective strategy for interfacial engineering of optoelectronic devices. Hole-selective SAM is becoming popular among high-performance inverted perovskite solar cells (PSCs), but the presence of strong acidic anchors (such as -PO3H2) in state-of-the-art SAM is detrimental to device stability. Herein, we report for the first time that acidity-weakened boric acid can function as an alternative anchor to construct efficient SAM-based hole-selective contact (HSC) for PSCs. Theoretical calculations reveal that boric acid spontaneously chemisorbs onto indium tin oxide (ITO) surface with oxygen vacancies facilitating the adsorption progress. Spectroscopy and electrical measurements indicate that boric acid anchor significantly mitigates ITO corrosion. The excess boric acid containing molecules improves perovskite deposition and results in a coherent and well-passivated bottom interface, which boosts the fill factor (FF) performance for a variety of perovskite compositions. The optimal boric acid-anchoring HSC (MTPA-BA) can achieve power conversion efficiency close to 23% with a high FF of 85.2%. More importantly, the devices show improved stability: 90% of their initial efficiency is retained after 2400 h of storage (ISOS-D-1) or 400 h of operation (ISOS-L-1), which are 5-fold higher than those of phosphonic acid SAM-based devices. Acidity-weakened boric acid SAMs, which are friendly to ITO, exhibits well the great potential to improve the stability of the interface as well as the device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luanzhaohui发布了新的文献求助20
刚刚
刚刚
cch发布了新的文献求助10
1秒前
闪闪山柳发布了新的文献求助10
3秒前
Luka应助祝志泽采纳,获得20
5秒前
英姑应助陈炜smile采纳,获得10
6秒前
6秒前
9秒前
10秒前
Yultuz友发布了新的文献求助10
11秒前
TristeOwen完成签到,获得积分10
11秒前
caohuijun完成签到,获得积分10
12秒前
14秒前
Ajax完成签到,获得积分10
14秒前
NovaZ完成签到,获得积分10
15秒前
15秒前
张晓念发布了新的文献求助30
17秒前
小刘关注了科研通微信公众号
18秒前
20秒前
21秒前
xx完成签到,获得积分20
21秒前
高大笙完成签到,获得积分10
21秒前
21秒前
龙龙发布了新的文献求助30
21秒前
提提在干嘛完成签到,获得积分10
22秒前
科研通AI5应助慢慢采纳,获得10
22秒前
bkagyin应助yywww采纳,获得10
22秒前
运动员发布了新的文献求助10
25秒前
星辰大海应助fireking_sid采纳,获得10
26秒前
我是站长才怪完成签到,获得积分0
27秒前
李萌萌完成签到,获得积分10
28秒前
小二郎应助elivsZhou采纳,获得10
30秒前
33秒前
科研通AI2S应助正直涵菱采纳,获得10
35秒前
李爱国应助运动员采纳,获得10
36秒前
脑洞疼应助jjkktt采纳,获得10
37秒前
38秒前
yywww发布了新的文献求助10
40秒前
41秒前
淡然善斓完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769313
求助须知:如何正确求助?哪些是违规求助? 3314504
关于积分的说明 10171882
捐赠科研通 3029644
什么是DOI,文献DOI怎么找? 1662409
邀请新用户注册赠送积分活动 794913
科研通“疑难数据库(出版商)”最低求助积分说明 756440