DRdriver: identifying drug resistance driver genes using individual-specific gene regulatory network

基因 抗药性 生物 突变 遗传学 药品 机制(生物学) 计算生物学 药理学 认识论 哲学
作者
Yue Huang,Shunheng Zhou,Haizhou Liu,Zhou Xu,Mengqin Yuan,Fei Hou,Sina Chen,Jiahao Chen,Lihong Wang,Wei Jiang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2)
标识
DOI:10.1093/bib/bbad066
摘要

Drug resistance is one of principal limiting factors for cancer treatment. Several mechanisms, especially mutation, have been validated to implicate in drug resistance. In addition, drug resistance is heterogeneous, which makes an urgent need to explore the personalized driver genes of drug resistance. Here, we proposed an approach DRdriver to identify drug resistance driver genes in individual-specific network of resistant patients. First, we identified the differential mutations for each resistant patient. Next, the individual-specific network, which included the genes with differential mutations and their targets, was constructed. Then, the genetic algorithm was utilized to identify the drug resistance driver genes, which regulated the most differentially expressed genes and the least non-differentially expressed genes. In total, we identified 1202 drug resistance driver genes for 8 cancer types and 10 drugs. We also demonstrated that the identified driver genes were mutated more frequently than other genes and tended to be associated with the development of cancer and drug resistance. Based on the mutational signatures of all driver genes and enriched pathways of driver genes in brain lower grade glioma treated by temozolomide, the drug resistance subtypes were identified. Additionally, the subtypes showed great diversity in epithelial-mesenchyme transition, DNA damage repair and tumor mutation burden. In summary, this study developed a method DRdriver for identifying personalized drug resistance driver genes, which provides a framework for unlocking the molecular mechanism and heterogeneity of drug resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的冬寒完成签到 ,获得积分10
1秒前
小丛雨发布了新的文献求助10
1秒前
2秒前
veraonly发布了新的文献求助50
3秒前
Churchill87426完成签到,获得积分10
3秒前
4秒前
OrangeWang发布了新的文献求助20
4秒前
4秒前
5秒前
今后应助一个小胖子采纳,获得10
5秒前
zhao发布了新的文献求助10
5秒前
深情的友易完成签到,获得积分10
5秒前
hdy331完成签到,获得积分10
5秒前
6秒前
zxy完成签到 ,获得积分10
6秒前
7秒前
???给???的求助进行了留言
7秒前
田様应助缥缈凌萱采纳,获得10
8秒前
凉茶完成签到,获得积分10
9秒前
园yuan发布了新的文献求助10
9秒前
琉璃苣应助橘子橙采纳,获得10
10秒前
苦哈哈发布了新的文献求助10
11秒前
athena发布了新的文献求助30
11秒前
水牛完成签到,获得积分10
11秒前
11秒前
huang发布了新的文献求助10
11秒前
在水一方应助tongke采纳,获得10
12秒前
12秒前
zch曹县66完成签到,获得积分10
12秒前
无花果应助fys131415采纳,获得10
12秒前
13秒前
yi0完成签到,获得积分10
14秒前
科目三应助刘叶采纳,获得10
14秒前
taku完成签到 ,获得积分10
14秒前
无花果应助孙伟健采纳,获得10
15秒前
16秒前
科研通AI2S应助园yuan采纳,获得10
16秒前
科研通AI2S应助园yuan采纳,获得10
16秒前
勤恳煎饼完成签到 ,获得积分10
17秒前
大虫子完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135885
求助须知:如何正确求助?哪些是违规求助? 2786652
关于积分的说明 7778992
捐赠科研通 2442900
什么是DOI,文献DOI怎么找? 1298731
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870