Fast Model Predictive Control for Spacecraft Rendezvous and Docking with Obstacle Avoidance

会合 航天器 模型预测控制 避碰 控制理论(社会学) 对接(动物) 航空航天工程 避障 障碍物 工程类 计算机科学 控制工程 控制(管理) 人工智能 移动机器人 地理 机器人 医学 计算机安全 护理部 考古 碰撞
作者
Courtney Bashnick,Steve Ulrich
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:46 (5): 998-1007 被引量:12
标识
DOI:10.2514/1.g007314
摘要

No AccessEngineering NotesFast Model Predictive Control for Spacecraft Rendezvous and Docking with Obstacle AvoidanceCourtney Bashnick and Steve UlrichCourtney BashnickCarleton University, Ottawa, Ontario K1S 5B6, Canada and Steve UlrichCarleton University, Ottawa, Ontario K1S 5B6, CanadaPublished Online:9 Mar 2023https://doi.org/10.2514/1.G007314SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations About References [1] Nolet S., "Development of a Guidance, Navigation and Control Architecture and Validation Process Enabling Autonomous Docking to a Tumbling Satellite," Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, 2007. Google Scholar[2] Lopez I. and Mclnnes C. R., "Autonomous Rendezvous Using Artificial Potential Function Guidance," Journal of Guidance, Control, and Dynamics, Vol. 18, No. 2, 1995, pp. 237–241. https://doi.org/10.2514/3.21375 LinkGoogle Scholar[3] Hough J. and Ulrich S., "Cascaded Lyapunov Vector Fields for Acceleration-Constrained Spacecraft Path Planning," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 11, 2022, pp. 2076–2090. https://doi.org/10.2514/1.G006260 LinkGoogle Scholar[4] McCamish S. B., Romano M., Nolet S., Edwards C. M. and Miller D. W., "Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations," Journal of Spacecraft and Rockets, Vol. 46, No. 6, 2009, pp. 1202–1213. https://doi.org/10.2514/1.43563 LinkGoogle Scholar[5] Muñoz J. D., "Rapid Path-Planning Algorithms for Autonomous Proximity Operations of Satellites," Ph.D. Thesis, Univ. of Florida, Gainesville, FL, 2011. Google Scholar[6] Zappulla R., Park H., Virgili-Llop J. and Romano M., "Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field Approach," IEEE Transactions on Control Systems Technology, Vol. 27, No. 6, 2018, pp. 2598–2605. https://doi.org/10.1109/TCST.2018.2866963 Google Scholar[7] Hovell K. and Ulrich S., "On Deep Reinforcement Learning for Spacecraft Guidance," AIAA Scitech 2020 Forum, AIAA Paper 2020-1600, Jan. 2020. https://doi.org/10.2514/6.2020-1600 Google Scholar[8] Hovell K. and Ulrich S., "Deep Reinforcement Learning for Spacecraft Proximity Operations Guidance," Journal of Spacecraft and Rockets, Vol. 58, No. 2, 2021, pp. 254–264. https://doi.org/10.2514/1.A34838 LinkGoogle Scholar[9] Hovell K. and Ulrich S., "Laboratory Experimentation of Spacecraft Robotic Capture Using Deep-Reinforcement-Learning–Based Guidance," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 11, 2022, pp. 2138–2146. https://doi.org/10.2514/1.G006656 LinkGoogle Scholar[10] Boyarko G. A., "Spacecraft Guidance Strategies for Proximity Maneuvering and Close Approach with a Tumbling Object," Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, 2010. Google Scholar[11] Jewison C., Erwin R. S. and Saenz-Otero A., "Model Predictive Control with Ellipsoid Obstacle Constraints for Spacecraft Rendezvous," IFAC-PapersOnLine, Vol. 48, No. 9, 2015, pp. 257–262. https://doi.org/10.1016/j.ifacol.2015.08.093 CrossrefGoogle Scholar[12] Park H., Zagaris C., Virgili Llop J., Zappulla R., Kolmanovsky I. and Romano M., "Analysis and Experimentation of Model Predictive Control for Spacecraft Rendezvous and Proximity Operations with Multiple Obstacle Avoidance," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5273, Sept. 2016. https://doi.org/10.2514/6.2016-5273 Google Scholar[13] Park H., Zappulla R., Zagaris C., Virgili-Llop J. and Romano M., "Nonlinear Model Predictive Control for Spacecraft Rendezvous and Docking with a Rotating Target," 27th AAS/AIAA Spaceflight Mechanics Meeting, Vol. 2, AAS Paper 17-496, Univelt, San Diego, CA, Feb. 2017. Google Scholar[14] Malyuta D., Reynolds T. P., Szmuk M., Lew T., Bonalli R., Pavone M. and Acikmese B., "Convex Optimization for Trajectory Generation," arXiv Preprint, June 2021. https://doi.org/10.48550/arXiv.2106.09125 Google Scholar[15] Lu P. and Liu X., "Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 375–389. https://doi.org/10.2514/1.58436 LinkGoogle Scholar[16] Liu X. and Lu P., "Robust Trajectory Optimization for Highly Constrained Rendezvous and Proximity Operations," AIAA Guidance, Navigation, and Control (GNC) Conference, AIAA Paper 2013-4720, Aug. 2013. https://doi.org/10.2514/6.2013-4720 Google Scholar[17] Liu X. and Lu P., "Solving Nonconvex Optimal Control Problems by Convex Optimization," Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750–765. https://doi.org/10.2514/1.62110. LinkGoogle Scholar[18] Petersen C., Jaunzemis A., Baldwin M., Holzinger M. and Kolmanovsky I., "Model Predictive Control and Extended Command Governor for Improving Robustness of Relative Motion Guidance and Control," 24th AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 14-249, Univelt, San Diego, CA, Jan. 2014, pp. 701–718. Google Scholar[19] Weiss A., Baldwin M., Erwin R. S. and Kolmanovsky I., "Model Predictive Control for Spacecraft Rendezvous and Docking: Strategies for Handling Constraints and Case Studies," IEEE Transactions on Control Systems Technology, Vol. 23, No. 4, 2015, pp. 1638–1647. https://doi.org/10.1109/TCST.2014.2379639 CrossrefGoogle Scholar[20] Park H., Di Cairano S. and Kolmanovsky I., "Linear Quadratic Model Predictive Control Approach to Spacecraft Rendezvous and Docking," Proceedings of 21st AAS/AIAA Space Flight Mechanics Meeting, Spaceflight Mechanics, Part III of Advances in the Astronautical Sciences, Vol. 140, AAS Paper 11-142, Univelt, Inc., Escondido, CA, Feb. 2011, pp. 565–584. Google Scholar[21] Di Cairano S., Park H. and Kolmanovsky I., "Model Predictive Control Approach for Guidance of Spacecraft Rendezvous and Proximity Maneuvering," International Journal of Robust and Nonlinear Control, Vol. 22, No. 12, 2012, pp. 1398–1427. https://doi.org/10.1002/rnc.2827 CrossrefGoogle Scholar[22] Zagaris C., Park H., Virgili-Llop J., Zappulla R., Romano M. and Kolmanovsky I., "Model Predictive Control of Spacecraft Relative Motion with Convexified Keep-Out-Zone Constraints," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 9, 2018, pp. 2054–2062. https://doi.org/10.2514/1.G003549 LinkGoogle Scholar[23] Wächter A. and Biegler L. T., "On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming," Mathematical Programming, Vol. 106, No. 1, 2006, pp. 25–57. https://doi.org/10.1007/s10107-004-0559-y CrossrefGoogle Scholar[24] Virgili-Llop J., Zagaris C., Park H., Zappulla R. and Romano M., "Experimental Evaluation of Model Predictive Control and Inverse Dynamics Control for Spacecraft Proximity and Docking Maneuvers," CEAS Space Journal, Vol. 10, No. 1, 2018, pp. 37–49. https://doi.org/10.1007/s12567-017-0155-7 CrossrefGoogle Scholar[25] Richards A., Schouwenaars T., How J. P. and Feron E., "Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Programming," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 755–764. https://doi.org/10.2514/2.4943 LinkGoogle Scholar[26] Wang Y. and Boyd S., "Fast Model Predictive Control Using Online Optimization," IEEE Transactions on Control Systems Technology, Vol. 18, No. 2, 2009, pp. 267–278. https://doi.org/10.1109/TCST.2009.2017934 Google Scholar[27] Hartley E. N. and Maciejowski J. M., "Field Programmable Gate Array Based Predictive Control System for Spacecraft Rendezvous in Elliptical Orbits," Optimal Control Applications and Methods, Vol. 36, No. 5, 2015, pp. 585–607. https://doi.org/10.1002/oca.2117 CrossrefGoogle Scholar[28] Mammarella M., Lorenzen M., Capello E., Park H., Dabbene F., Guglieri G., Romano M. and Allgöwer F., "An Offline-Sampling SMPC Framework with Application to Autonomous Space Maneuvers," IEEE Transactions on Control Systems Technology, Vol. 28, No. 2, 2020, pp. 388–402. https://doi.org/10.1109/TCST.2018.2879938 CrossrefGoogle Scholar[29] Mayne D. Q., Rawlings J. B., Rao C. V. and Scokaert P. O., "Constrained Model Predictive Control: Stability and Optimality," Automatica, Vol. 36, No. 6, 2000, pp. 789–814. https://doi.org/10.1016/S0005-1098(99)00214-9 CrossrefGoogle Scholar[30] Clohessy W. H. and Wiltshire R. S., "Terminal Guidance System for Satellite Rendezvous," Journal of the Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. https://doi.org/10.2514/8.8704 LinkGoogle Scholar[31] Boyd S. and Vandenberghe L., Convex Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2004, pp. 531–535. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 46, Number 5May 2023 CrossmarkInformationCopyright © 2023 by Courtney Bashnick and Steve Ulrich. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsApplied MathematicsControl SystemsControl TheoryGeneral PhysicsGuidance and Navigational AlgorithmsGuidance, Navigation, and Control SystemsMathematical OptimizationSpacecraft Guidance and Control KeywordsRendezvous and Docking AlgorithmsModel Predictive ControlConvex OptimizationReal-Time OptimizationAutonomous Guidance and ControlSpacecraft Proximity OperationsAcknowledgmentsThis research was financially supported in part by the Natural Sciences and Engineering Research Council of Canada Alexander Graham Bell Canada Graduate Scholarship-Master's award and through the New Technologies for Canadian Observatories Collaborative Research and Training Experience program.PDF Received24 October 2022Accepted29 January 2023Published online9 March 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助研友_nPxP9n采纳,获得10
1秒前
完美世界应助adazbq采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
斯文败类应助子车翠霜采纳,获得30
4秒前
4秒前
6秒前
IVY发布了新的文献求助10
6秒前
7秒前
black完成签到,获得积分10
7秒前
frap完成签到,获得积分0
7秒前
余甘木完成签到,获得积分20
8秒前
敏1997完成签到,获得积分10
8秒前
小苏打发布了新的文献求助10
9秒前
9秒前
琳琳发布了新的文献求助10
10秒前
yang应助科目三三次郎采纳,获得10
11秒前
13秒前
研途者发布了新的文献求助20
13秒前
14秒前
14秒前
15秒前
yancy应助YY采纳,获得10
16秒前
研友_nV2ROn完成签到,获得积分10
16秒前
16秒前
张可完成签到,获得积分20
16秒前
懒羊羊完成签到,获得积分10
16秒前
17秒前
苏沐521完成签到,获得积分20
17秒前
18秒前
lin完成签到,获得积分10
18秒前
18秒前
上官尔芙发布了新的文献求助20
19秒前
19秒前
20秒前
20秒前
云梦完成签到,获得积分10
20秒前
fff发布了新的文献求助10
20秒前
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806