清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fast Model Predictive Control for Spacecraft Rendezvous and Docking with Obstacle Avoidance

会合 航天器 模型预测控制 避碰 控制理论(社会学) 对接(动物) 航空航天工程 避障 障碍物 工程类 计算机科学 控制工程 控制(管理) 人工智能 移动机器人 地理 碰撞 护理部 考古 机器人 医学 计算机安全
作者
Courtney Bashnick,Steve Ulrich
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:46 (5): 998-1007 被引量:12
标识
DOI:10.2514/1.g007314
摘要

No AccessEngineering NotesFast Model Predictive Control for Spacecraft Rendezvous and Docking with Obstacle AvoidanceCourtney Bashnick and Steve UlrichCourtney BashnickCarleton University, Ottawa, Ontario K1S 5B6, Canada and Steve UlrichCarleton University, Ottawa, Ontario K1S 5B6, CanadaPublished Online:9 Mar 2023https://doi.org/10.2514/1.G007314SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations About References [1] Nolet S., "Development of a Guidance, Navigation and Control Architecture and Validation Process Enabling Autonomous Docking to a Tumbling Satellite," Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, 2007. Google Scholar[2] Lopez I. and Mclnnes C. R., "Autonomous Rendezvous Using Artificial Potential Function Guidance," Journal of Guidance, Control, and Dynamics, Vol. 18, No. 2, 1995, pp. 237–241. https://doi.org/10.2514/3.21375 LinkGoogle Scholar[3] Hough J. and Ulrich S., "Cascaded Lyapunov Vector Fields for Acceleration-Constrained Spacecraft Path Planning," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 11, 2022, pp. 2076–2090. https://doi.org/10.2514/1.G006260 LinkGoogle Scholar[4] McCamish S. B., Romano M., Nolet S., Edwards C. M. and Miller D. W., "Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations," Journal of Spacecraft and Rockets, Vol. 46, No. 6, 2009, pp. 1202–1213. https://doi.org/10.2514/1.43563 LinkGoogle Scholar[5] Muñoz J. D., "Rapid Path-Planning Algorithms for Autonomous Proximity Operations of Satellites," Ph.D. Thesis, Univ. of Florida, Gainesville, FL, 2011. Google Scholar[6] Zappulla R., Park H., Virgili-Llop J. and Romano M., "Real-Time Autonomous Spacecraft Proximity Maneuvers and Docking Using an Adaptive Artificial Potential Field Approach," IEEE Transactions on Control Systems Technology, Vol. 27, No. 6, 2018, pp. 2598–2605. https://doi.org/10.1109/TCST.2018.2866963 Google Scholar[7] Hovell K. and Ulrich S., "On Deep Reinforcement Learning for Spacecraft Guidance," AIAA Scitech 2020 Forum, AIAA Paper 2020-1600, Jan. 2020. https://doi.org/10.2514/6.2020-1600 Google Scholar[8] Hovell K. and Ulrich S., "Deep Reinforcement Learning for Spacecraft Proximity Operations Guidance," Journal of Spacecraft and Rockets, Vol. 58, No. 2, 2021, pp. 254–264. https://doi.org/10.2514/1.A34838 LinkGoogle Scholar[9] Hovell K. and Ulrich S., "Laboratory Experimentation of Spacecraft Robotic Capture Using Deep-Reinforcement-Learning–Based Guidance," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 11, 2022, pp. 2138–2146. https://doi.org/10.2514/1.G006656 LinkGoogle Scholar[10] Boyarko G. A., "Spacecraft Guidance Strategies for Proximity Maneuvering and Close Approach with a Tumbling Object," Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, 2010. Google Scholar[11] Jewison C., Erwin R. S. and Saenz-Otero A., "Model Predictive Control with Ellipsoid Obstacle Constraints for Spacecraft Rendezvous," IFAC-PapersOnLine, Vol. 48, No. 9, 2015, pp. 257–262. https://doi.org/10.1016/j.ifacol.2015.08.093 CrossrefGoogle Scholar[12] Park H., Zagaris C., Virgili Llop J., Zappulla R., Kolmanovsky I. and Romano M., "Analysis and Experimentation of Model Predictive Control for Spacecraft Rendezvous and Proximity Operations with Multiple Obstacle Avoidance," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5273, Sept. 2016. https://doi.org/10.2514/6.2016-5273 Google Scholar[13] Park H., Zappulla R., Zagaris C., Virgili-Llop J. and Romano M., "Nonlinear Model Predictive Control for Spacecraft Rendezvous and Docking with a Rotating Target," 27th AAS/AIAA Spaceflight Mechanics Meeting, Vol. 2, AAS Paper 17-496, Univelt, San Diego, CA, Feb. 2017. Google Scholar[14] Malyuta D., Reynolds T. P., Szmuk M., Lew T., Bonalli R., Pavone M. and Acikmese B., "Convex Optimization for Trajectory Generation," arXiv Preprint, June 2021. https://doi.org/10.48550/arXiv.2106.09125 Google Scholar[15] Lu P. and Liu X., "Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 375–389. https://doi.org/10.2514/1.58436 LinkGoogle Scholar[16] Liu X. and Lu P., "Robust Trajectory Optimization for Highly Constrained Rendezvous and Proximity Operations," AIAA Guidance, Navigation, and Control (GNC) Conference, AIAA Paper 2013-4720, Aug. 2013. https://doi.org/10.2514/6.2013-4720 Google Scholar[17] Liu X. and Lu P., "Solving Nonconvex Optimal Control Problems by Convex Optimization," Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750–765. https://doi.org/10.2514/1.62110. LinkGoogle Scholar[18] Petersen C., Jaunzemis A., Baldwin M., Holzinger M. and Kolmanovsky I., "Model Predictive Control and Extended Command Governor for Improving Robustness of Relative Motion Guidance and Control," 24th AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 14-249, Univelt, San Diego, CA, Jan. 2014, pp. 701–718. Google Scholar[19] Weiss A., Baldwin M., Erwin R. S. and Kolmanovsky I., "Model Predictive Control for Spacecraft Rendezvous and Docking: Strategies for Handling Constraints and Case Studies," IEEE Transactions on Control Systems Technology, Vol. 23, No. 4, 2015, pp. 1638–1647. https://doi.org/10.1109/TCST.2014.2379639 CrossrefGoogle Scholar[20] Park H., Di Cairano S. and Kolmanovsky I., "Linear Quadratic Model Predictive Control Approach to Spacecraft Rendezvous and Docking," Proceedings of 21st AAS/AIAA Space Flight Mechanics Meeting, Spaceflight Mechanics, Part III of Advances in the Astronautical Sciences, Vol. 140, AAS Paper 11-142, Univelt, Inc., Escondido, CA, Feb. 2011, pp. 565–584. Google Scholar[21] Di Cairano S., Park H. and Kolmanovsky I., "Model Predictive Control Approach for Guidance of Spacecraft Rendezvous and Proximity Maneuvering," International Journal of Robust and Nonlinear Control, Vol. 22, No. 12, 2012, pp. 1398–1427. https://doi.org/10.1002/rnc.2827 CrossrefGoogle Scholar[22] Zagaris C., Park H., Virgili-Llop J., Zappulla R., Romano M. and Kolmanovsky I., "Model Predictive Control of Spacecraft Relative Motion with Convexified Keep-Out-Zone Constraints," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 9, 2018, pp. 2054–2062. https://doi.org/10.2514/1.G003549 LinkGoogle Scholar[23] Wächter A. and Biegler L. T., "On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming," Mathematical Programming, Vol. 106, No. 1, 2006, pp. 25–57. https://doi.org/10.1007/s10107-004-0559-y CrossrefGoogle Scholar[24] Virgili-Llop J., Zagaris C., Park H., Zappulla R. and Romano M., "Experimental Evaluation of Model Predictive Control and Inverse Dynamics Control for Spacecraft Proximity and Docking Maneuvers," CEAS Space Journal, Vol. 10, No. 1, 2018, pp. 37–49. https://doi.org/10.1007/s12567-017-0155-7 CrossrefGoogle Scholar[25] Richards A., Schouwenaars T., How J. P. and Feron E., "Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Programming," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 755–764. https://doi.org/10.2514/2.4943 LinkGoogle Scholar[26] Wang Y. and Boyd S., "Fast Model Predictive Control Using Online Optimization," IEEE Transactions on Control Systems Technology, Vol. 18, No. 2, 2009, pp. 267–278. https://doi.org/10.1109/TCST.2009.2017934 Google Scholar[27] Hartley E. N. and Maciejowski J. M., "Field Programmable Gate Array Based Predictive Control System for Spacecraft Rendezvous in Elliptical Orbits," Optimal Control Applications and Methods, Vol. 36, No. 5, 2015, pp. 585–607. https://doi.org/10.1002/oca.2117 CrossrefGoogle Scholar[28] Mammarella M., Lorenzen M., Capello E., Park H., Dabbene F., Guglieri G., Romano M. and Allgöwer F., "An Offline-Sampling SMPC Framework with Application to Autonomous Space Maneuvers," IEEE Transactions on Control Systems Technology, Vol. 28, No. 2, 2020, pp. 388–402. https://doi.org/10.1109/TCST.2018.2879938 CrossrefGoogle Scholar[29] Mayne D. Q., Rawlings J. B., Rao C. V. and Scokaert P. O., "Constrained Model Predictive Control: Stability and Optimality," Automatica, Vol. 36, No. 6, 2000, pp. 789–814. https://doi.org/10.1016/S0005-1098(99)00214-9 CrossrefGoogle Scholar[30] Clohessy W. H. and Wiltshire R. S., "Terminal Guidance System for Satellite Rendezvous," Journal of the Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. https://doi.org/10.2514/8.8704 LinkGoogle Scholar[31] Boyd S. and Vandenberghe L., Convex Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2004, pp. 531–535. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 46, Number 5May 2023 CrossmarkInformationCopyright © 2023 by Courtney Bashnick and Steve Ulrich. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsApplied MathematicsControl SystemsControl TheoryGeneral PhysicsGuidance and Navigational AlgorithmsGuidance, Navigation, and Control SystemsMathematical OptimizationSpacecraft Guidance and Control KeywordsRendezvous and Docking AlgorithmsModel Predictive ControlConvex OptimizationReal-Time OptimizationAutonomous Guidance and ControlSpacecraft Proximity OperationsAcknowledgmentsThis research was financially supported in part by the Natural Sciences and Engineering Research Council of Canada Alexander Graham Bell Canada Graduate Scholarship-Master's award and through the New Technologies for Canadian Observatories Collaborative Research and Training Experience program.PDF Received24 October 2022Accepted29 January 2023Published online9 March 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
拜无忧发布了新的文献求助10
15秒前
Orange应助科研通管家采纳,获得10
32秒前
留胡子的丹彤完成签到 ,获得积分10
36秒前
liciky完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Yanjun发布了新的文献求助10
1分钟前
方白秋完成签到,获得积分10
1分钟前
1分钟前
Swiftie发布了新的文献求助10
1分钟前
ldy539发布了新的文献求助10
1分钟前
Swiftie完成签到,获得积分10
1分钟前
wangjinpeng0225完成签到 ,获得积分10
1分钟前
Yanjun完成签到,获得积分10
1分钟前
wxyinhefeng完成签到 ,获得积分10
2分钟前
CC发布了新的文献求助20
3分钟前
囚徒完成签到,获得积分10
3分钟前
3分钟前
4分钟前
囚徒发布了新的文献求助10
4分钟前
jerseyxue发布了新的文献求助10
4分钟前
jerseyxue完成签到,获得积分20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
zwj003完成签到,获得积分10
4分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
难过行云完成签到 ,获得积分10
5分钟前
5分钟前
草木青发布了新的文献求助10
5分钟前
王博士完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
lengel发布了新的文献求助10
8分钟前
lengel完成签到,获得积分10
8分钟前
小怪完成签到,获得积分10
9分钟前
zwy109完成签到 ,获得积分10
9分钟前
骆凤灵完成签到 ,获得积分10
9分钟前
10分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422912
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903978
捐赠科研通 2710724
什么是DOI,文献DOI怎么找? 1486669
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682341