Learning Region Similarities via Graph-Based Deep Metric Learning

计算机科学 利用 相似性(几何) 人工智能 图形 人工神经网络 基本事实 深度学习 公制(单位) 兴趣点 模式识别(心理学) 机器学习 数据挖掘 理论计算机科学 运营管理 计算机安全 经济 图像(数学)
作者
Yunxiang Zhao,Jianzhong Qi,Bayu Distiawan Trisedya,Yixin Su,Rui Zhang,Hongguang Ren
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (10): 10237-10250 被引量:4
标识
DOI:10.1109/tkde.2023.3253802
摘要

Region similarity learning plays an essential role in applications such as business site selection, region recommendation, and urban planning. Earlier studies mainly represent regions as bags of points of interest (POIs) for region similarity comparisons, which cannot fully exploit the spatial features of the regions. Recently, researchers propose to use deep neural networks to exploit spatial features such as POI geo-coordinates and categories, which have produced more accurate and robust region similarity learning results. However, many useful features such as the height and size of a POI, and the distance and relative importance between the POIs, are still overlooked in these methods. To take advantage of such features, we propose to represent regions as graphs, where nodes are POIs with rich features such as height, size, and hexagonal coordinates, while edges are the relationships between POIs formulated by their road network distances. To capture POIs' importance, we weigh them by their height and size. Since there is limited availability of ground-truth region similarity data, we propose a contrastive learning-based multi-relational graph neural network (C-MPGCN) for region similarity learning based on the graph representations. To generate data for model training, we propose a soft graph edit distance (SGED) based algorithm to generate triples of similar and dissimilar graphs of a given graph (representing a given region) based on the POI weights. Experimental results show that C-MPGCN outperforms the state-of-the-art methods for region similarity learning consistently with an improvement of at least 8.6% and 9.4% in terms of MRR and HR@1, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助carl采纳,获得10
3秒前
科研通AI5应助番薯采纳,获得10
3秒前
4秒前
传统的纸飞机完成签到 ,获得积分10
8秒前
奇拉维特完成签到 ,获得积分10
8秒前
Yeyuntian完成签到,获得积分10
8秒前
Stvn完成签到,获得积分10
9秒前
bckl888发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
可爱的函函应助鸽子采纳,获得10
10秒前
赵逸臻完成签到,获得积分10
11秒前
Stvn发布了新的文献求助10
12秒前
13秒前
李健应助sdl采纳,获得10
13秒前
frost完成签到,获得积分10
14秒前
科研通AI2S应助lewis163采纳,获得10
14秒前
14秒前
14秒前
迷路的芝麻完成签到 ,获得积分10
14秒前
15秒前
bckl888完成签到,获得积分10
16秒前
17秒前
赘婿应助zhou采纳,获得10
17秒前
勤劳的小蜜蜂完成签到 ,获得积分10
17秒前
随心随意发布了新的文献求助10
19秒前
大强完成签到,获得积分10
20秒前
21秒前
大巧若拙完成签到,获得积分10
21秒前
aaaa完成签到,获得积分20
21秒前
珍宝珠完成签到,获得积分10
22秒前
Ella完成签到,获得积分10
22秒前
23秒前
新楚完成签到 ,获得积分10
23秒前
aaaa关注了科研通微信公众号
25秒前
丘比特应助liuzengzhang666采纳,获得30
25秒前
26秒前
科研通AI5应助TTTHANKS采纳,获得10
26秒前
ni发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774680
求助须知:如何正确求助?哪些是违规求助? 3320470
关于积分的说明 10200348
捐赠科研通 3035183
什么是DOI,文献DOI怎么找? 1665375
邀请新用户注册赠送积分活动 796901
科研通“疑难数据库(出版商)”最低求助积分说明 757635