Classification of household microplastics using a multi-model approach based on Raman spectroscopy

微塑料 支持向量机 人工智能 线性判别分析 主成分分析 极限学习机 模式识别(心理学) 机器学习 生物系统 环境科学 计算机科学 环境化学 人工神经网络 化学 生物
作者
Zikang Feng,Lina Zheng,Jia Liu
出处
期刊:Chemosphere [Elsevier]
卷期号:325: 138312-138312 被引量:52
标识
DOI:10.1016/j.chemosphere.2023.138312
摘要

The extensive use of plastics leads to the release and diffusion of microplastics. Household plastic products occupy a large part and are closely related to daily life. Due to the small size and complex composition of microplastics, it is challenging to identify and quantify microplastics. Therefore,a multi-model machine learning approach was developed for classification of household microplastics based on Raman spectroscopy. In this study, Raman spectroscopy and machine learning algorithm are combined to realize the accurate identification of seven standard microplastic samples, real microplastics samples and real microplastic samples post-exposure to environmental stresses. Four single-model machine learning methods were used in this study, including Support vector machine (SVM), K-nearest neighbor (KNN), Linear discriminant analysis (LDA), and Multi-layer perceptron (MLP) model. The principal components analysis (PCA) was utilized before SVM, KNN and LDA. The classification effect of four models on standard plastic samples is over 88%, and reliefF algorithm was used to distinguish HDPE and LDPE samples. A multi-model is proposed based on four single models including PCA-LDA, PCA-KNN and MLP. The recognition accuracy of multi-model for standard microplastic samples, real microplastic samples and microplastic samples post-exposure to environmental stresses is over 98%. Our study demonstrates that the multi-model coupled with Raman spectroscopy is a valuable tool for microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Research完成签到 ,获得积分10
4秒前
13秒前
17秒前
flyingpig发布了新的文献求助10
17秒前
huanir99发布了新的文献求助80
19秒前
时光不旧只是满尘灰完成签到 ,获得积分10
21秒前
xu发布了新的文献求助10
22秒前
Singularity完成签到,获得积分0
24秒前
辛勤的喉完成签到 ,获得积分10
24秒前
贝贝完成签到 ,获得积分10
26秒前
zozox完成签到 ,获得积分10
41秒前
等待小丸子完成签到,获得积分10
42秒前
ChatGPT发布了新的文献求助10
53秒前
55秒前
仰望星空发布了新的文献求助10
1分钟前
IShowSpeed完成签到,获得积分10
1分钟前
偷得浮生半日闲完成签到,获得积分10
1分钟前
忆茶戏完成签到 ,获得积分10
1分钟前
carl完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得30
1分钟前
传奇3应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
害怕的小刺猬完成签到 ,获得积分10
1分钟前
认真的奇异果完成签到 ,获得积分10
1分钟前
顾矜应助Li采纳,获得10
1分钟前
木木完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
甘sir完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
华仔应助Li采纳,获得10
1分钟前
t铁核桃1985完成签到 ,获得积分0
2分钟前
含蓄的静竹完成签到 ,获得积分10
2分钟前
忧心的藏鸟完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689401
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118