Classification of household microplastics using a multi-model approach based on Raman spectroscopy

微塑料 支持向量机 人工智能 线性判别分析 主成分分析 极限学习机 模式识别(心理学) 机器学习 生物系统 环境科学 计算机科学 环境化学 人工神经网络 化学 生物
作者
Zikang Feng,Lina Zheng,Jia Liu
出处
期刊:Chemosphere [Elsevier]
卷期号:325: 138312-138312 被引量:33
标识
DOI:10.1016/j.chemosphere.2023.138312
摘要

The extensive use of plastics leads to the release and diffusion of microplastics. Household plastic products occupy a large part and are closely related to daily life. Due to the small size and complex composition of microplastics, it is challenging to identify and quantify microplastics. Therefore,a multi-model machine learning approach was developed for classification of household microplastics based on Raman spectroscopy. In this study, Raman spectroscopy and machine learning algorithm are combined to realize the accurate identification of seven standard microplastic samples, real microplastics samples and real microplastic samples post-exposure to environmental stresses. Four single-model machine learning methods were used in this study, including Support vector machine (SVM), K-nearest neighbor (KNN), Linear discriminant analysis (LDA), and Multi-layer perceptron (MLP) model. The principal components analysis (PCA) was utilized before SVM, KNN and LDA. The classification effect of four models on standard plastic samples is over 88%, and reliefF algorithm was used to distinguish HDPE and LDPE samples. A multi-model is proposed based on four single models including PCA-LDA, PCA-KNN and MLP. The recognition accuracy of multi-model for standard microplastic samples, real microplastic samples and microplastic samples post-exposure to environmental stresses is over 98%. Our study demonstrates that the multi-model coupled with Raman spectroscopy is a valuable tool for microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳的寻冬完成签到,获得积分10
1秒前
1秒前
大个应助HQ采纳,获得10
1秒前
1秒前
lcm发布了新的文献求助10
1秒前
2秒前
yoyo发布了新的文献求助10
2秒前
爆米花应助崔建采纳,获得10
2秒前
2秒前
dawnyue完成签到,获得积分10
2秒前
xumy完成签到,获得积分20
3秒前
3秒前
慧慧子完成签到,获得积分20
3秒前
4秒前
4秒前
在水一方应助Du采纳,获得10
4秒前
Xdhcg发布了新的文献求助20
5秒前
愿好应助xukaixuan001采纳,获得10
5秒前
6秒前
6秒前
甜美白云完成签到,获得积分20
6秒前
科研通AI2S应助yueyue采纳,获得20
7秒前
JamesPei应助xieyin717采纳,获得10
7秒前
浮游应助自由蓉采纳,获得10
7秒前
啊啊啊完成签到,获得积分10
8秒前
yyf发布了新的文献求助10
8秒前
赘婿应助zhanzhanzhan采纳,获得10
8秒前
8秒前
8秒前
xiuxue424发布了新的文献求助10
9秒前
Owen应助舒心的芝麻采纳,获得10
9秒前
猛小马发布了新的文献求助10
10秒前
写得出发的中完成签到,获得积分10
10秒前
lcm完成签到,获得积分10
10秒前
浮游应助青田101采纳,获得10
11秒前
多宝完成签到,获得积分10
11秒前
英俊的铭应助美好的千凝采纳,获得10
11秒前
大模型应助甲乙丙丁采纳,获得10
11秒前
缥缈灵煌发布了新的文献求助10
11秒前
活力的亦云完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728