Classification of household microplastics using a multi-model approach based on Raman spectroscopy

微塑料 支持向量机 人工智能 线性判别分析 主成分分析 极限学习机 模式识别(心理学) 机器学习 生物系统 环境科学 计算机科学 环境化学 人工神经网络 化学 生物
作者
Zikang Feng,Lina Zheng,Jia Liu
出处
期刊:Chemosphere [Elsevier]
卷期号:325: 138312-138312 被引量:26
标识
DOI:10.1016/j.chemosphere.2023.138312
摘要

The extensive use of plastics leads to the release and diffusion of microplastics. Household plastic products occupy a large part and are closely related to daily life. Due to the small size and complex composition of microplastics, it is challenging to identify and quantify microplastics. Therefore,a multi-model machine learning approach was developed for classification of household microplastics based on Raman spectroscopy. In this study, Raman spectroscopy and machine learning algorithm are combined to realize the accurate identification of seven standard microplastic samples, real microplastics samples and real microplastic samples post-exposure to environmental stresses. Four single-model machine learning methods were used in this study, including Support vector machine (SVM), K-nearest neighbor (KNN), Linear discriminant analysis (LDA), and Multi-layer perceptron (MLP) model. The principal components analysis (PCA) was utilized before SVM, KNN and LDA. The classification effect of four models on standard plastic samples is over 88%, and reliefF algorithm was used to distinguish HDPE and LDPE samples. A multi-model is proposed based on four single models including PCA-LDA, PCA-KNN and MLP. The recognition accuracy of multi-model for standard microplastic samples, real microplastic samples and microplastic samples post-exposure to environmental stresses is over 98%. Our study demonstrates that the multi-model coupled with Raman spectroscopy is a valuable tool for microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助叫滚滚采纳,获得10
刚刚
刚刚
Rui发布了新的文献求助10
1秒前
1秒前
China发布了新的文献求助10
1秒前
1秒前
ryze完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
莉莉发布了新的文献求助10
3秒前
4秒前
4秒前
辣辣完成签到,获得积分10
4秒前
桐桐应助白华苍松采纳,获得10
4秒前
华仔应助啊嚯采纳,获得10
4秒前
yasan完成签到,获得积分10
4秒前
5秒前
Fsy完成签到,获得积分10
5秒前
万能图书馆应助China采纳,获得10
5秒前
杨欢完成签到,获得积分10
5秒前
Stanley发布了新的文献求助10
5秒前
哭泣爆米花完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
钰宁发布了新的文献求助10
6秒前
灵巧荆发布了新的文献求助10
6秒前
慕青应助juan采纳,获得10
7秒前
7秒前
白小白发布了新的文献求助10
7秒前
丘比特应助阳光莲小蓬采纳,获得10
7秒前
司徒迎曼发布了新的文献求助10
7秒前
7秒前
8秒前
liuliu发布了新的文献求助10
8秒前
8秒前
523发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762