Classification of household microplastics using a multi-model approach based on Raman spectroscopy

微塑料 支持向量机 人工智能 线性判别分析 主成分分析 极限学习机 模式识别(心理学) 机器学习 生物系统 环境科学 计算机科学 环境化学 人工神经网络 化学 生物
作者
Zikang Feng,Lina Zheng,Jia Liu
出处
期刊:Chemosphere [Elsevier]
卷期号:325: 138312-138312 被引量:26
标识
DOI:10.1016/j.chemosphere.2023.138312
摘要

The extensive use of plastics leads to the release and diffusion of microplastics. Household plastic products occupy a large part and are closely related to daily life. Due to the small size and complex composition of microplastics, it is challenging to identify and quantify microplastics. Therefore,a multi-model machine learning approach was developed for classification of household microplastics based on Raman spectroscopy. In this study, Raman spectroscopy and machine learning algorithm are combined to realize the accurate identification of seven standard microplastic samples, real microplastics samples and real microplastic samples post-exposure to environmental stresses. Four single-model machine learning methods were used in this study, including Support vector machine (SVM), K-nearest neighbor (KNN), Linear discriminant analysis (LDA), and Multi-layer perceptron (MLP) model. The principal components analysis (PCA) was utilized before SVM, KNN and LDA. The classification effect of four models on standard plastic samples is over 88%, and reliefF algorithm was used to distinguish HDPE and LDPE samples. A multi-model is proposed based on four single models including PCA-LDA, PCA-KNN and MLP. The recognition accuracy of multi-model for standard microplastic samples, real microplastic samples and microplastic samples post-exposure to environmental stresses is over 98%. Our study demonstrates that the multi-model coupled with Raman spectroscopy is a valuable tool for microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
久桃完成签到,获得积分10
5秒前
乐观的颦发布了新的文献求助200
7秒前
丘比特应助Wcy采纳,获得10
8秒前
小飞侠发布了新的文献求助10
8秒前
完美的天空应助hh0采纳,获得10
8秒前
Jojo发布了新的文献求助10
16秒前
无花果应助11采纳,获得10
16秒前
淡定秀发完成签到,获得积分10
19秒前
23秒前
完美的天空应助hh0采纳,获得10
24秒前
JamesPei应助欢呼的忘幽采纳,获得10
24秒前
FashionBoy应助黄玥采纳,获得10
24秒前
ldx完成签到,获得积分10
24秒前
猫的毛完成签到,获得积分10
25秒前
26秒前
友好的琦发布了新的文献求助10
30秒前
11发布了新的文献求助10
30秒前
34秒前
hyy完成签到,获得积分10
36秒前
科研通AI2S应助港岛妹妹采纳,获得10
37秒前
傲娇的鹰发布了新的文献求助10
38秒前
不配.应助hh0采纳,获得10
38秒前
41秒前
42秒前
43秒前
闪闪的鹏博完成签到,获得积分10
45秒前
万嘉俊发布了新的文献求助10
46秒前
哈哈哈完成签到 ,获得积分10
46秒前
niu发布了新的文献求助10
48秒前
48秒前
俏皮的采波完成签到,获得积分10
50秒前
上古完成签到,获得积分10
52秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240903
求助须知:如何正确求助?哪些是违规求助? 2885604
关于积分的说明 8239330
捐赠科研通 2554052
什么是DOI,文献DOI怎么找? 1382168
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097