Deep multi-task network based on sparse feature learning for tool wear prediction

刀具磨损 停工期 计算机科学 机械加工 理论(学习稳定性) 正规化(语言学) 人工智能 特征(语言学) 机器学习 任务(项目管理) 数据挖掘 工程类 哲学 系统工程 操作系统 机械工程 语言学
作者
Jianliang He,Chen Yin,Yan He,Yi Pan,Yulin Wang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (13): 6231-6241 被引量:4
标识
DOI:10.1177/09544062221116224
摘要

Tool wear monitoring plays a key role in the machining industry to increase productivity and reduce downtime. The Data-driven monitoring techniques have been successfully applied in the tool wear prediction in recent years. However, the terrible environment and the varying machining parameters make the data quality and the distribution complex, which limits the performance of data-driven prediction models. How to build a model for different data distribution under different working conditions adaptively is an important research topic. To solve this problem, this paper proposed a new deep multi-task network based on sparse feature learning for tool wear prediction. By introducing the L21 norm and F-norm regularization term to the network loss function, the model can capture the tool wear characteristic sparsely from the input frequency spectrum. Experiment results on a machine tool show that the proposed method has a significant performance improvement in terms of predictive accuracy and numerical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
某某完成签到,获得积分10
2秒前
鑫渊发布了新的文献求助10
3秒前
科研小白完成签到 ,获得积分10
3秒前
哈哈哈完成签到,获得积分10
4秒前
ncushiqiang完成签到,获得积分10
4秒前
Jameson完成签到,获得积分10
4秒前
4秒前
水123发布了新的文献求助10
5秒前
浅忆晨曦完成签到 ,获得积分10
6秒前
努力的学完成签到,获得积分10
7秒前
Rose发布了新的文献求助10
8秒前
smile完成签到 ,获得积分10
8秒前
司空元正完成签到,获得积分10
8秒前
科目三应助lo采纳,获得10
8秒前
清欢完成签到,获得积分10
9秒前
阿腾发布了新的文献求助10
10秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
勤劳冰安应助科研通管家采纳,获得10
13秒前
叁零完成签到,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
吕洺旭应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
13秒前
吕洺旭应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832