Survival prediction optimization of acute myeloid leukaemia based on T‐cell function‐related genes and plasma proteins

医学 基因签名 危险系数 队列 接收机工作特性 弗雷明翰风险评分 肿瘤科 髓样 生存分析 比例危险模型 内科学 基因 免疫学 基因表达 置信区间 生物 遗传学 疾病
作者
Yun Wang,Shuzhao Chen,Peidong Chi,Run‐Cong Nie,Robert Peter Gale,Hanying Huang,Zhigang Chen,Yanyu Cai,Enping Yan,Xinmei Zhang,Na Zhong,Yang Liang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:199 (4): 572-586 被引量:1
标识
DOI:10.1111/bjh.18453
摘要

Summary Interactions between acute myeloid leukaemia (AML) cells and immune cells are postulated to corelate with outcomes of AML patients. However, data on T‐cell function‐related signature are not included in current AML survival prognosis models. We examined data of RNA matrices from 1611 persons with AML extracted from public databases arrayed in a training and three validation cohorts. We developed an eight‐gene T‐cell function‐related signature using the random survival forest variable hunting algorithm. Accuracy of gene identification was tested in a real‐world cohort by quantifying cognate plasma protein concentrations. The model had robust prognostic accuracy in the training and validation cohorts with five‐year areas under receiver‐operator characteristic curve (AUROC) of 0.67–0.76. The signature was divided into high‐ and low‐risk scores using an optimum cut‐off value. Five‐year survival in the high‐risk groups was 6%–23% compared with 42%–58% in the low‐risk groups in all the cohorts (all p values <0.001). In multivariable analyses, a high‐risk score independently predicted briefer survival with hazard ratios of death in the range 1.28–2.59. Gene set enrichment analyses indicated significant enrichment for genes involved in immune suppression pathways in the high‐risk groups. Accuracy of the gene signature was validated in a real‐world cohort with 88 pretherapy plasma samples. In scRNA‐seq analyses most genes in the signature were transcribed in leukaemia cells. Combining the gene expression signature with the 2017 European LeukemiaNet classification significantly increased survival prediction accuracy with a five‐year AUROC of 0.82 compared with 0.76 ( p < 0.001). Our T‐cell function‐related risk score complements current AML prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助gtttt采纳,获得10
刚刚
刚刚
YSS发布了新的文献求助10
刚刚
1秒前
清秀的靖雁完成签到,获得积分10
2秒前
糯米发布了新的文献求助10
3秒前
zhouxinxiao完成签到,获得积分10
4秒前
7秒前
陈峰琦发布了新的文献求助10
8秒前
9秒前
sensen完成签到,获得积分20
10秒前
10秒前
Jocelyn完成签到,获得积分10
12秒前
啦啦啦发布了新的文献求助10
12秒前
YSS完成签到 ,获得积分10
13秒前
13秒前
CAOHOU应助sensen采纳,获得10
13秒前
麦克发布了新的文献求助10
14秒前
辣辣辣辣辣完成签到,获得积分10
16秒前
zho发布了新的文献求助10
16秒前
16秒前
gtttt发布了新的文献求助10
17秒前
lucky完成签到,获得积分10
18秒前
21秒前
量子星尘发布了新的文献求助30
21秒前
麦克完成签到,获得积分10
21秒前
22秒前
22秒前
可爱的函函应助kirito采纳,获得10
23秒前
孙苗苗完成签到,获得积分20
24秒前
天天快乐应助凡夕木叶采纳,获得10
24秒前
斯文败类应助调皮的浩天采纳,获得10
26秒前
kirito完成签到,获得积分10
26秒前
安详靖柏完成签到,获得积分10
28秒前
鳗鱼鸽子完成签到,获得积分10
29秒前
29秒前
Nick应助黑眼圈采纳,获得30
32秒前
silence完成签到,获得积分10
32秒前
33秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859