Survival prediction optimization of acute myeloid leukaemia based on T‐cell function‐related genes and plasma proteins

医学 基因签名 危险系数 队列 接收机工作特性 弗雷明翰风险评分 肿瘤科 髓样 生存分析 比例危险模型 内科学 基因 免疫学 基因表达 置信区间 生物 遗传学 疾病
作者
Yun Wang,Shuzhao Chen,Peidong Chi,Run‐Cong Nie,Robert Peter Gale,Han-Ying Huang,Zhigang Chen,Yanyu Cai,Enping Yan,Xinmei Zhang,Na Zhong,Yang Liang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:199 (4): 572-586 被引量:1
标识
DOI:10.1111/bjh.18453
摘要

Summary Interactions between acute myeloid leukaemia (AML) cells and immune cells are postulated to corelate with outcomes of AML patients. However, data on T‐cell function‐related signature are not included in current AML survival prognosis models. We examined data of RNA matrices from 1611 persons with AML extracted from public databases arrayed in a training and three validation cohorts. We developed an eight‐gene T‐cell function‐related signature using the random survival forest variable hunting algorithm. Accuracy of gene identification was tested in a real‐world cohort by quantifying cognate plasma protein concentrations. The model had robust prognostic accuracy in the training and validation cohorts with five‐year areas under receiver‐operator characteristic curve (AUROC) of 0.67–0.76. The signature was divided into high‐ and low‐risk scores using an optimum cut‐off value. Five‐year survival in the high‐risk groups was 6%–23% compared with 42%–58% in the low‐risk groups in all the cohorts (all p values <0.001). In multivariable analyses, a high‐risk score independently predicted briefer survival with hazard ratios of death in the range 1.28–2.59. Gene set enrichment analyses indicated significant enrichment for genes involved in immune suppression pathways in the high‐risk groups. Accuracy of the gene signature was validated in a real‐world cohort with 88 pretherapy plasma samples. In scRNA‐seq analyses most genes in the signature were transcribed in leukaemia cells. Combining the gene expression signature with the 2017 European LeukemiaNet classification significantly increased survival prediction accuracy with a five‐year AUROC of 0.82 compared with 0.76 ( p < 0.001). Our T‐cell function‐related risk score complements current AML prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐发布了新的文献求助10
刚刚
annie完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
2752543083发布了新的文献求助10
1秒前
2秒前
今后应助123采纳,获得10
3秒前
3秒前
Chris学长完成签到,获得积分10
3秒前
3秒前
Grace发布了新的文献求助10
4秒前
5秒前
斯文败类应助山河采纳,获得10
5秒前
xlz发布了新的文献求助10
6秒前
hfm发布了新的文献求助30
7秒前
8秒前
8秒前
8秒前
研友_P85D6Z发布了新的文献求助10
9秒前
积极的惜筠完成签到 ,获得积分10
10秒前
10秒前
尘香如故完成签到 ,获得积分10
10秒前
科研通AI6.1应助混子玉采纳,获得10
11秒前
sunzhuxi发布了新的文献求助10
12秒前
mslg33完成签到,获得积分10
12秒前
玥玥玥玥发布了新的文献求助10
13秒前
15秒前
15秒前
哈哈完成签到,获得积分10
16秒前
SHYSHYLONG发布了新的文献求助10
16秒前
BRUCE发布了新的文献求助10
16秒前
17秒前
17秒前
NexusExplorer应助xlz采纳,获得10
18秒前
18秒前
慕青应助朴素的鸡翅采纳,获得10
19秒前
zl987发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
风趣的夜南关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735617
求助须知:如何正确求助?哪些是违规求助? 5361598
关于积分的说明 15330603
捐赠科研通 4879809
什么是DOI,文献DOI怎么找? 2622330
邀请新用户注册赠送积分活动 1571336
关于科研通互助平台的介绍 1528174