Survival prediction optimization of acute myeloid leukaemia based on T‐cell function‐related genes and plasma proteins

医学 基因签名 危险系数 队列 接收机工作特性 弗雷明翰风险评分 肿瘤科 髓样 生存分析 比例危险模型 内科学 基因 免疫学 基因表达 置信区间 生物 遗传学 疾病
作者
Yun Wang,Shuzhao Chen,Peidong Chi,Run‐Cong Nie,Robert Peter Gale,Han-Ying Huang,Zhigang Chen,Yanyu Cai,Enping Yan,Xinmei Zhang,Na Zhong,Yang Liang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:199 (4): 572-586 被引量:1
标识
DOI:10.1111/bjh.18453
摘要

Summary Interactions between acute myeloid leukaemia (AML) cells and immune cells are postulated to corelate with outcomes of AML patients. However, data on T‐cell function‐related signature are not included in current AML survival prognosis models. We examined data of RNA matrices from 1611 persons with AML extracted from public databases arrayed in a training and three validation cohorts. We developed an eight‐gene T‐cell function‐related signature using the random survival forest variable hunting algorithm. Accuracy of gene identification was tested in a real‐world cohort by quantifying cognate plasma protein concentrations. The model had robust prognostic accuracy in the training and validation cohorts with five‐year areas under receiver‐operator characteristic curve (AUROC) of 0.67–0.76. The signature was divided into high‐ and low‐risk scores using an optimum cut‐off value. Five‐year survival in the high‐risk groups was 6%–23% compared with 42%–58% in the low‐risk groups in all the cohorts (all p values <0.001). In multivariable analyses, a high‐risk score independently predicted briefer survival with hazard ratios of death in the range 1.28–2.59. Gene set enrichment analyses indicated significant enrichment for genes involved in immune suppression pathways in the high‐risk groups. Accuracy of the gene signature was validated in a real‐world cohort with 88 pretherapy plasma samples. In scRNA‐seq analyses most genes in the signature were transcribed in leukaemia cells. Combining the gene expression signature with the 2017 European LeukemiaNet classification significantly increased survival prediction accuracy with a five‐year AUROC of 0.82 compared with 0.76 ( p < 0.001). Our T‐cell function‐related risk score complements current AML prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Timeus发布了新的文献求助10
刚刚
坦率的山菡完成签到,获得积分20
刚刚
刚刚
科研通AI6应助清爽飞莲采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
黄梦娇发布了新的文献求助10
2秒前
2秒前
科研猫完成签到,获得积分10
3秒前
stk完成签到,获得积分10
3秒前
辛勤云朵发布了新的文献求助10
4秒前
搜集达人应助niu采纳,获得10
5秒前
高定完成签到,获得积分10
5秒前
1111发布了新的文献求助10
5秒前
Rylee完成签到,获得积分10
5秒前
小欣发布了新的文献求助10
5秒前
我哪会写文章啊完成签到,获得积分10
6秒前
123应助ComeOn采纳,获得10
7秒前
ccwu完成签到,获得积分10
7秒前
L.C.发布了新的文献求助10
7秒前
9秒前
周杰完成签到,获得积分10
9秒前
9秒前
活力南露完成签到,获得积分10
9秒前
ding应助叶伟帮采纳,获得30
10秒前
科研通AI6应助黄梦娇采纳,获得10
10秒前
顾矜应助叶伟帮采纳,获得10
10秒前
小马甲应助黄梦娇采纳,获得10
10秒前
乐乐应助叶伟帮采纳,获得10
10秒前
赘婿应助叶伟帮采纳,获得10
10秒前
李健应助叶伟帮采纳,获得30
10秒前
充电宝应助叶伟帮采纳,获得10
10秒前
10秒前
Criminology34应助叶伟帮采纳,获得10
10秒前
科研通AI2S应助叶伟帮采纳,获得10
10秒前
上帝粒子应助叶伟帮采纳,获得10
10秒前
白羊发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660080
求助须知:如何正确求助?哪些是违规求助? 4831261
关于积分的说明 15089149
捐赠科研通 4818692
什么是DOI,文献DOI怎么找? 2578738
邀请新用户注册赠送积分活动 1533349
关于科研通互助平台的介绍 1492094