亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Survival prediction optimization of acute myeloid leukaemia based on T‐cell function‐related genes and plasma proteins

医学 基因签名 危险系数 队列 接收机工作特性 弗雷明翰风险评分 肿瘤科 髓样 生存分析 比例危险模型 内科学 基因 免疫学 基因表达 置信区间 生物 遗传学 疾病
作者
Yun Wang,Shuzhao Chen,Peidong Chi,Run‐Cong Nie,Robert Peter Gale,Han-Ying Huang,Zhigang Chen,Yanyu Cai,Enping Yan,Xinmei Zhang,Na Zhong,Yang Liang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:199 (4): 572-586 被引量:1
标识
DOI:10.1111/bjh.18453
摘要

Summary Interactions between acute myeloid leukaemia (AML) cells and immune cells are postulated to corelate with outcomes of AML patients. However, data on T‐cell function‐related signature are not included in current AML survival prognosis models. We examined data of RNA matrices from 1611 persons with AML extracted from public databases arrayed in a training and three validation cohorts. We developed an eight‐gene T‐cell function‐related signature using the random survival forest variable hunting algorithm. Accuracy of gene identification was tested in a real‐world cohort by quantifying cognate plasma protein concentrations. The model had robust prognostic accuracy in the training and validation cohorts with five‐year areas under receiver‐operator characteristic curve (AUROC) of 0.67–0.76. The signature was divided into high‐ and low‐risk scores using an optimum cut‐off value. Five‐year survival in the high‐risk groups was 6%–23% compared with 42%–58% in the low‐risk groups in all the cohorts (all p values <0.001). In multivariable analyses, a high‐risk score independently predicted briefer survival with hazard ratios of death in the range 1.28–2.59. Gene set enrichment analyses indicated significant enrichment for genes involved in immune suppression pathways in the high‐risk groups. Accuracy of the gene signature was validated in a real‐world cohort with 88 pretherapy plasma samples. In scRNA‐seq analyses most genes in the signature were transcribed in leukaemia cells. Combining the gene expression signature with the 2017 European LeukemiaNet classification significantly increased survival prediction accuracy with a five‐year AUROC of 0.82 compared with 0.76 ( p < 0.001). Our T‐cell function‐related risk score complements current AML prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得30
1秒前
9秒前
彭于晏应助欣喜秋天采纳,获得10
9秒前
Jolly发布了新的文献求助30
13秒前
wanci应助555采纳,获得10
16秒前
51秒前
欣喜秋天发布了新的文献求助10
56秒前
1分钟前
123123发布了新的文献求助10
1分钟前
1分钟前
123123完成签到,获得积分10
1分钟前
zzzzz发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助欣喜秋天采纳,获得10
1分钟前
1分钟前
CHX发布了新的文献求助10
1分钟前
欣喜秋天完成签到,获得积分10
1分钟前
ls完成签到,获得积分10
1分钟前
1分钟前
WYDNBDX2013发布了新的文献求助10
1分钟前
今后应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ava应助WYDNBDX2013采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
TwentyNine完成签到,获得积分10
2分钟前
mono发布了新的文献求助30
2分钟前
2分钟前
mono完成签到,获得积分10
2分钟前
MOMO发布了新的文献求助10
2分钟前
阔达的沛文完成签到,获得积分10
2分钟前
2分钟前
2分钟前
biebie发布了新的文献求助20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459225
求助须知:如何正确求助?哪些是违规求助? 4564934
关于积分的说明 14297314
捐赠科研通 4490026
什么是DOI,文献DOI怎么找? 2459507
邀请新用户注册赠送积分活动 1449159
关于科研通互助平台的介绍 1424647