Survival prediction optimization of acute myeloid leukaemia based on T‐cell function‐related genes and plasma proteins

医学 基因签名 危险系数 队列 接收机工作特性 弗雷明翰风险评分 肿瘤科 髓样 生存分析 比例危险模型 内科学 基因 免疫学 基因表达 置信区间 生物 遗传学 疾病
作者
Yun Wang,Shuzhao Chen,Peidong Chi,Run‐Cong Nie,Robert Peter Gale,Han-Ying Huang,Zhigang Chen,Yanyu Cai,Enping Yan,Xinmei Zhang,Na Zhong,Yang Liang
出处
期刊:British Journal of Haematology [Wiley]
卷期号:199 (4): 572-586 被引量:1
标识
DOI:10.1111/bjh.18453
摘要

Summary Interactions between acute myeloid leukaemia (AML) cells and immune cells are postulated to corelate with outcomes of AML patients. However, data on T‐cell function‐related signature are not included in current AML survival prognosis models. We examined data of RNA matrices from 1611 persons with AML extracted from public databases arrayed in a training and three validation cohorts. We developed an eight‐gene T‐cell function‐related signature using the random survival forest variable hunting algorithm. Accuracy of gene identification was tested in a real‐world cohort by quantifying cognate plasma protein concentrations. The model had robust prognostic accuracy in the training and validation cohorts with five‐year areas under receiver‐operator characteristic curve (AUROC) of 0.67–0.76. The signature was divided into high‐ and low‐risk scores using an optimum cut‐off value. Five‐year survival in the high‐risk groups was 6%–23% compared with 42%–58% in the low‐risk groups in all the cohorts (all p values <0.001). In multivariable analyses, a high‐risk score independently predicted briefer survival with hazard ratios of death in the range 1.28–2.59. Gene set enrichment analyses indicated significant enrichment for genes involved in immune suppression pathways in the high‐risk groups. Accuracy of the gene signature was validated in a real‐world cohort with 88 pretherapy plasma samples. In scRNA‐seq analyses most genes in the signature were transcribed in leukaemia cells. Combining the gene expression signature with the 2017 European LeukemiaNet classification significantly increased survival prediction accuracy with a five‐year AUROC of 0.82 compared with 0.76 ( p < 0.001). Our T‐cell function‐related risk score complements current AML prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123zyuyu完成签到,获得积分10
刚刚
Akim应助小机灵鬼采纳,获得10
刚刚
LALball发布了新的文献求助10
刚刚
kuro完成签到 ,获得积分10
1秒前
在水一方应助fighting采纳,获得10
1秒前
HYT发布了新的文献求助10
1秒前
巴拉巴拉发布了新的文献求助10
1秒前
傲天大侠发布了新的文献求助10
2秒前
dora完成签到,获得积分20
2秒前
852应助dawdwada采纳,获得10
2秒前
healer完成签到,获得积分10
2秒前
奋斗的南风关注了科研通微信公众号
2秒前
酷波er应助111采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
高大的老头完成签到,获得积分10
5秒前
5秒前
6秒前
蓝色斑马发布了新的文献求助10
6秒前
如约而至完成签到,获得积分10
7秒前
flh完成签到,获得积分10
7秒前
7秒前
7秒前
dslhxwlkm发布了新的文献求助10
8秒前
qiu发布了新的文献求助20
8秒前
8秒前
like发布了新的文献求助10
8秒前
9秒前
日富一日发布了新的文献求助10
9秒前
随便完成签到,获得积分10
9秒前
114514完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助30
11秒前
宇月幸成发布了新的文献求助10
11秒前
12秒前
12秒前
惔惔惔发布了新的文献求助10
12秒前
马子妍发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894