反硝化
厌氧氨氧化菌
河口
沉积物
氮气循环
环境科学
沉积岩
活性氮
氮气
环境化学
沉积作用
海洋学
地质学
化学
反硝化细菌
地球化学
地貌学
有机化学
作者
Ehui Tan,Ting-Chang Hsu,Wenbin Zou,Xiuli Yan,Zhongdong Huang,Bin Chen,Yen‐Chiang Chang,Zeyu Zheng,Lei Zheng,Meixiang Xu,Li Tian,Shuh‐Ji Kao
出处
期刊:Water Research
[Elsevier]
日期:2022-10-01
卷期号:224: 119121-119121
被引量:9
标识
DOI:10.1016/j.watres.2022.119121
摘要
Sedimentary denitrification and anaerobic ammonium oxidation (anammox) are two microbially-mediated nitrogen removal pathways with distinct climatic feedbacks. Estuaries receive large fluxes of anthropogenic nitrogen and serve as hotspots for nitrogen loss. Applying 15N isotope pairing technique and sediment intact core incubation in two subtropical estuaries, the Yangtze River Estuary (YRE) and Jiulong River Estuary (JRE), we show that denitrification predominates the sedimentary nitrogen loss with a minor contribution (8.6 ± 7.5%) from anammox. Particulate organic matter degradation sustains the sedimentary nitrogen removal linking the nitrogen transformations between water column and sediment. Our results indicate that estuarine sediments exhibit high areal nitrogen removal rate, but play a relatively weak role in eliminating the nitrogen inputted from river basin due to the limited area. The riverine excess nitrogen will eventually enter into the adjacent continental shelf and be removed via phytoplankton assimilation-sedimentation-degradation-coupled nitrification-denitrification. In addition, sedimentary denitrification causes 1.8 ± 2.2% of nitrogen flow towards nitrous oxide (N2O) production and the derived N2O release flux accounts for 59% and 65% of the daily sea-air N2O emission in the YRE and JRE, respectively. These findings contribute to a better understanding of estuarine sedimentary nitrogen removal and associated climate feedbacks, and to the parameterization of Earth system models.
科研通智能强力驱动
Strongly Powered by AbleSci AI