Interfacial modification to anomalously facilitate thermal transport through cathode-separator composite in lithium-ion batteries

相间 单层 材料科学 阴极 分离器(采油) 分子 化学工程 复合数 纳米技术 化学 化学物理 复合材料 有机化学 物理化学 遗传学 生物 热力学 物理 工程类
作者
Jinlong He,Weikang Xian,Lei Tao,Patrick M. Corrigan,Ying Li
出处
期刊:Applied Surface Science [Elsevier]
卷期号:606: 155010-155010 被引量:5
标识
DOI:10.1016/j.apsusc.2022.155010
摘要

Effective thermal management is the key to ensuring lithium-ion batteries (LIBs)' lifetime and performance. However, the high thermal resistance across the cathode-separator interphase considerably limits the fast heat transfer. Adopting the self-assembled monolayers (SAMs) approach, various organic molecules were selected as the heat controllers to modulate the interfacial thermal conductance (ITC) between the cathode, lithium cobalt oxide (LCO), and the separator, polyethylene (PE). Silane-based SAMs molecules with different groups, including –NH2, –SH, and –CH3, were assembled into the LCO-PE composite's interphase. Through molecular dynamics (MD) simulations, our results demonstrate SAMs molecules-decorated LCO-PE nanocomposites give a notably improved interfacial heat transfer but are of different magnitude. Such difference mainly results from the different non-bonded interactions and compatibility between SAMs molecules and PE. Of the three SAMs molecules, the assembled 3-aminopropyl trimethoxysilane (APTMS) featuring –NH2 groups improves the ITC the most, about 303.29% in comparison with the pristine interface. Furthermore, these findings help elucidate the underlying mechanisms of how SAMs molecules improve heat transfer across the LCO-PE interphase. Specifically, such enhancement is greatly attributed to the unique SAMs molecules, which build the new heat transfer pathways between LCO and PE, straighten SAMs molecules' morphology, remove the discontinuities in the temperature field, develop the strong non-bonded interactions between SAMs molecules and PE, and strengthen the coupling vibration of two materials. These investigations provide a new perspective for designing composite's interphase to mediate the heat transfer and achieve more effective thermal management across the interphase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyz完成签到,获得积分10
刚刚
1秒前
天玄一刀发布了新的文献求助10
1秒前
未知数发布了新的文献求助10
1秒前
xiao白完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
YaoHui发布了新的文献求助10
3秒前
Morpheus完成签到,获得积分20
4秒前
游戏玩家完成签到,获得积分10
4秒前
还活着发布了新的文献求助10
4秒前
完美世界应助fighting采纳,获得10
4秒前
xyz发布了新的文献求助10
5秒前
慈祥的樱发布了新的文献求助10
5秒前
科研八戒发布了新的文献求助30
6秒前
7秒前
8秒前
摆烂完成签到,获得积分10
8秒前
吃不得苦完成签到,获得积分10
8秒前
宫冷雁发布了新的文献求助10
8秒前
erdongsir完成签到,获得积分10
8秒前
小媛媛完成签到,获得积分10
10秒前
神威公瑾完成签到,获得积分10
10秒前
lalala发布了新的文献求助10
10秒前
10秒前
王富贵回来了完成签到,获得积分20
11秒前
11秒前
顾矜应助坚强的孤兰采纳,获得10
11秒前
爱打篮球的坤坤完成签到,获得积分10
12秒前
12秒前
12秒前
syl应助youhao6a采纳,获得10
12秒前
852应助KY Mr.WANG采纳,获得10
12秒前
乐乐应助怡然若雁采纳,获得10
12秒前
13秒前
13秒前
Zzzhu完成签到,获得积分10
13秒前
cck发布了新的文献求助10
13秒前
CodeCraft应助yyyq0721采纳,获得10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169709
求助须知:如何正确求助?哪些是违规求助? 2820854
关于积分的说明 7932432
捐赠科研通 2481185
什么是DOI,文献DOI怎么找? 1321712
科研通“疑难数据库(出版商)”最低求助积分说明 633340
版权声明 602561